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NOTESIntroduction
Adolescence is a time of significant neural and 
behavioral change with remarkable development 
in social, emotional, and cognitive skills. It is also 
a time of increased exploration and risk-taking 
(e.g., drug use). Many of these changes are thought 
to result from increased reward value coupled with 
an underdeveloped inhibitory control, and thus, 
a hypersensitivity to reward. Perturbations during 
adolescence can alter the developmental trajectory of 
the brain, resulting in long-term alterations in reward-
associated behaviors. This review highlights recent 
developments in our understanding of how neural 
circuits, pubertal hormones, and environmental 
factors contribute to typical adolescent reward-
associated behaviors, with a particular focus on 
sex differences, the medial prefrontal cortex, social 
reward, social isolation, and drug use. This research 
has only begun to elucidate the contributions of the 
many neural, endocrine, and environmental changes 
to heightened reward sensitivity and increased 
vulnerability to mental health disorders that 
characterize this life stage.

Adolescence can be both an exciting and a 
tumultuous time. It comprises the formative years 
during which individuals reach sexual maturity and 
develop the social, emotional, and cognitive skills 
needed as they move toward independence and 
adulthood (Spear, 2000). It is a time of increased 
exploration, but this exploration often includes 
increased sensation seeking and the initiation of 
drug use (Steinberg, 2004; Lipari and Jean-Francois, 
2013), which could contribute to the high percentage 
of preventable deaths among teens (Minino, 2010). 
It is also a time of increased vulnerability to stress and 
the emergence of several psychiatric and behavioral 
disorders (e.g., schizophrenia, depression, and eating 
disorders) (Kessler et al., 2005). Hence, research into 
the neurobiological underpinnings of adolescence 
is important for providing a basic understanding 
of normative social, emotional, reproductive, and 
cognitive development as well as the prevention 
and treatment of health risks and disorders that 
characterize this life stage.

The prevailing theory underlying adolescent 
vulnerability to psychiatric disorders proposes 
a developmental mismatch in accumbal-driven 
sensation seeking (risk-taking) and prefrontal 
inhibition of impulsivity (Casey and Jones, 2010). 
It is thought that this mismatch leads to a greater 
sensitivity to rewarding stimuli and may explain 
adolescents’ increased vulnerability to drugs of abuse 
and stress, mentioned above (Casey and Jones, 2010).

Sex differences in vulnerability to psychiatric 
disorders emerge during adolescence, as do important 
sex differences in the types of disorders displayed by 
males and females. For example, males are seemingly 
more vulnerable to externalizing disorders (e.g., 
bipolar disorder and attention deficit hyperactivity 
disorder), whereas females are more susceptible to 
internalizing disorders (e.g., depression and anxiety). 
Although it is difficult to disentangle how social 
structures contribute to these vulnerabilities, it is 
critical to acknowledge that social and biological 
variables likely act in concert to produce such 
outcomes. There are striking sex differences in 
adolescent development, including in the timing 
of puberty and neural development. These may 
give rise to sex differences in the vulnerability to 
psychiatric disorders. Therefore, forming a concrete 
understanding of these developmental differences is 
critical for advancing sex-specific treatment strategies 
for vulnerable populations.

The reorganization of the reward circuitry during 
adolescence is one factor that is integral to both 
adolescent development and increased vulnerability 
to disease (Luciana, 2013; Doremus-Fitzwater and 
Spear, 2016). This process is driven by complex 
interactions among neural pathways, endocrine 
axes, and environmental stimuli to produce a 
functional mesocorticolimbic reward system in 
adulthood. Hence, it is imperative to determine 
how these factors act independently and in concert 
to shape the mesocorticolimbic reward circuitry 
during adolescence. This review highlights research 
on interactions between the mesocorticolimbic 
dopamine (DA) system, pubertal hormones, and 
environmental perturbations (drug use and social 
stress) and their effects on cognitive and social 
adolescent development.

Puberty-Dependent and Puberty-
Independent Adolescent 
Development
“Puberty” and “adolescence” both refer to the 
transition from childhood to adulthood, but these 
terms are not equivalent. Puberty is reserved for 
physiological and behavioral changes associated 
with the attainment of reproductive competence 
(e.g., activation of the hypothalamic-pituitary-
gonadal [HPG] axis, appearance of secondary 
sex characteristics, and onset of sexual interest 
and mating behaviors), all of which are sexually 
dimorphic. Adolescence is a broader term that 
includes puberty as well as nonreproductive traits 
(e.g., social, emotional, and cognitive development). 
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NOTESReproductive hormones, however, can have 
widespread effects, and the development of several 
nonreproductive adolescent traits can also be driven 
by activation of the HPG axis at puberty (puberty-
dependent, e.g., ethanol intake, anxiety-related 
behaviors) (Primus and Kellogg, 1989, 1990; Vetter-
O’Hagen and Spear, 2011). The physiological, 
anatomical, and temporal changes that differ between 
males and females can also lead to the emergence of 
sex differences during adolescence (Schulz et al., 
2009a). Other adolescent traits, however, develop 
independently of HPG activation and merely 
coincide with pubertal development (puberty-
independent, e.g., social play, aggression) (Whitsett, 
1975; Smith et al., 1996; Wommack and Delville, 
2007). Sex differences may also manifest in puberty-
independent traits owing to organizational actions 
of perinatal hormones or direct actions of genes on 
the sex chromosomes (Arnold, 2017). This puberty-
dependent versus puberty-independent distinction 
is important because many neuropsychiatric and 
behavioral disorders arise during adolescence, 
exhibit striking sex differences, and are impacted 
by pubertal hormones as well as nonpubertal factors 
(Fombonne, 2009; Graber, 2013; Trotman et al., 
2013). Given that the mesocorticolimbic DA 
pathway is sexually dimorphic (Becker, 2009) and 
regulated by gonadal hormones in adults (Kuhn et 
al., 2010; Becker et al., 2012), a central question is 
whether adolescent development of reward-related 
behaviors and circuitry is puberty-dependent or 
puberty-independent.

Sex Differences in Reward and 
Reward-Related Circuitry
Studies in humans and laboratory animals generally 
support the notion that adolescents are more 
sensitive to reward than adults. This is behaviorally 
manifest in multiple ways, including elevated levels 
of sensation seeking and risk-taking, as well as 
reduced inhibitory control, which are all maximal 
during the early to mid-adolescent period (Burnett 
et al., 2010; Andrzejewski et al., 2011; Burton and 
Fletcher, 2012; Urosevic et al., 2012; Collado et al., 
2014). In laboratory rodents, heightened reactivity to 
drug rewards has also been demonstrated (Doremus 
et al., 2005; Levin et al., 2007; Anker and Carroll, 
2010), although this might depend on the drug or 
other procedural factors (Doremus-Fitzwater and 
Spear, 2016). When gender or sex is considered, an 
even more nuanced picture emerges. For example, 
compared with males, females have a relatively 
earlier and lower-magnitude peak in sensation 
seeking during mid-adolescence that is followed by 

a more rapid decline to stability by early adulthood 
(Shulman et al., 2015). In this comprehensive, 
longitudinal study, it was also demonstrated that 
impulse control improved steadily following early 
adolescence in both males and females, but males 
remained more impulsive than females through 
their mid-20s. In rats, compared with adults, male 
adolescents exhibit greater intake and motivation for 
palatable food that is either calorie dense (sweetened 
condensed milk) (Friemel et al., 2010) or calorie 
devoid (Marshall et al., 2017). However, this age-
dependent difference in reward sensitivity was not 
apparent in female rats (Marshall et al., 2017). 
Using food-restricted rats trained to associate a tone 
with delivery of a sucrose solution, Hammerslag 
and Gulley (2014) found that the effects of age 
and sex were dependent on the characteristics of 
the behavior being measured. Specifically, females 
exhibited enhanced development of stimulus-
directed behavior in that both adult and adolescent 
females acquired Pavlovian approach more quickly 
than males. Adolescents of both sexes, however, had 
weaker expression of goal-directed behavior (i.e., 
entries into the sucrose delivery trough) and were 
less sensitive to reward devaluation than adults.

Recent work has also highlighted gender and sex 
differences in neural development of reward-related 
brain circuits that may play an important role in 
these age and gender/sex differences in behavior. In 
the striatum, adolescent boys lag behind as they reach 
peak striatal volume at ~15 years of age compared 
with 12 years of age for girls (Raznahan et al., 2014). 
Structural development in the cortex also appears 
to be relatively delayed in boys compared with girls, 
although exceptions include a more rapid reduction 
in the thickness of the dorsolateral prefrontal cortex 
(PFC) in males (Raznahan et al., 2010). Many of 
these adolescent cortical changes are associated 
with adrenal and/or gonadal markers of pubertal 
maturation, often in a sex-dependent manner 
(Herting et al., 2017). In the rat medial prefrontal 
cortex (mPFC), there are significant decreases in 
neuron number (Markham et al., 2007), dendritic 
complexity (Koss et al., 2014), and synapse number 
(Drzewiecki et al., 2016) between adolescence and 
adulthood. At least some of these changes are more 
pronounced in females than in males and are closely 
linked to puberty onset (Willing and Juraska, 2015). 
However, in the core and shell regions of the nucleus 
accumbens (NAc), these “pruning” processes and 
the emergence of adult-like morphological features 
appear to occur much earlier and well before the 
onset of puberty (Tepper et al., 1998; Lee and 
Sawatari, 2011).
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NOTESDevelopment of the PFC During 
Adolescence
The mPFC is a crucial regulator of reward-directed 
behaviors and likely contributes to cognitive 
development during adolescence. As a major 
component of the mesocorticolimbic DA pathway, 
the mPFC receives dopaminergic projections 
from the ventral tegmental area (VTA) and sends 
key glutamatergic projections to the NAc, a key 
integrator of reward processing (Albertin et al., 
2000; McGinty and Grace, 2009; Hamel et al., 
2017; Morrison et al., 2017). These regions form a 
larger circuitry (Fig. 1) that includes the basolateral 
amygdala (BLA) and ventral hippocampus (vHIP), 
among others. This circuit acts in concert to modulate 
dopaminergic and glutamatergic tone integrated 
by the NAc in response to salient stimuli. Loss or 
reduction of signaling within the PFC in humans has 
been associated with numerous psychiatric disorders, 
including anxiety and depression (Ressler and 
Mayberg, 2007) and substance use disorders (Volkow 
et al., 2010) in adulthood. Similar effects have been 
observed in rodent models in which exposure to stress 
or drugs of abuse can influence signaling between 
the PFC and NAc, resulting in addiction-related 
behaviors (MacAskill et al., 2014) or depressive-
related behaviors (Covington et al., 2010; Vialou et 
al., 2014; Bagot et al., 2015). For example, repeated 
exposure to cocaine in adult mice decreases the PFC 
inputs to D1 DA receptor–containing medium spiny 
neurons in the NAc (MacAskill et al., 2014).

One of the most dramatic brain changes occurring 
during adolescence is the unfolding of DA 
connectivity in the mPFC. In contrast to DA 
projections to limbic regions (e.g., NAc) and 
cortical innervation of other monoamines (e.g., 
norepinephrine and serotonin) that reach adult 
density levels early in life (Coyle and Molliver, 1977; 
Levitt and Moore, 1979; Lidov et al., 1980; Benes 
et al., 2000; Diamond, 2002), DA projections to 
the mPFC do not fully mature until early adulthood 
(Kalsbeek et al., 1988; Benes et al., 2000; Manitt et 
al., 2011; Naneix et al., 2012). In rodent models of 
both sexes, the number of dopaminergic fibers in the 
mPFC increases linearly between the juvenile period 
(postnatal day [P] 25) and young adulthood, with 
the most prominent increases occurring between the 
late juvenile period and early adulthood (Naneix et 
al., 2012; Willing et al., 2017). Interestingly, this 
is not a rodent-specific phenomenon, as protracted 
mesocortical DA development occurs in nonhuman 
primates and most likely in humans (Rosenberg 
and Lewis, 1994; Lambe et al., 2000), paralleling 
cognitive maturation.

In addition to changes in dopaminergic projections 
in adolescence, changes in dopaminergic 
receptor expression are prevalent throughout the 
mesocorticolimbic system, which may underlie the 
altered sensitivity to rewarding stimuli. In the NAc 
and dorsal striatum of rats, DA D1 and D2 receptor 
expression peaks during adolescence (P40), then 
declines to reach adult levels at ~P80 (Andersen et 
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Figure 1. Adolescent development of the mesocorticolimbic DA pathway. A, Major brain areas and projections of the mesocorti-
colimbic DA pathway. B, Schematic of postnatal development of key c mponents of this pathway along with changes in gonadal 
steroid hormones and pubertal markers. Hashed lines, Data specific to females. Developmental patterns and markers are based 
on data from Tarazi and Baldessarini (2000) (NAc D1, D2 receptors); Naneix et al. (2012) and Willing et al. (2017) (PFC DA fibers); 
and Dohler and Wuttke (1975) and Vetter-O’Hagen and Spear (2012) (gonadal steroid concentrations and pubertal markers). VO, 
vaginal opening; BPS, balano-preputial separation, E2, estradiol; T, testosterone.
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NOTESal., 2000). In the PFC of male rats, there is also a 
selective decrease of cells expressing D1 receptors 
that project to the NAc between P44 and adulthood 
(Brenhouse et al., 2008). However, there may be 
important species differences in these receptor 
changes across adolescence (Pokinko et al., 2017), 
and little is known about sex differences in this 
developmental milestone.

Measures of functional connectivity in humans have 
further elucidated the widespread changes between 
the PFC and subcortical structures throughout 
adolescence, with some evidence suggesting that 
a relatively stable network connectivity state does 
not occur until at least the mid-20s (Dosenbach et 
al., 2010). The potential relevance of these changes 
for behavior is not fully understood, but decreases in 
the functional coupling between subregions of the 
PFC and the NAc have been linked to decreases 
in self-reported risky behavior across adolescence 
(Qu et al., 2015). Interestingly, studies of PFC 
activation in humans have revealed sex differences 
in function that go beyond what might be expected 
from the anatomical correlates. One such functional 
development is resting-state functional connectivity, 
which describes the degree of synchrony between 
two different brain regions or between nearby areas 
within a brain region. In the dorsolateral PFC, 
resting-state functional connectivity between the 
hemispheres tends to increase with age in males but 
decreases with age in females (Zuo et al., 2010).

These data demonstrate that the mesocorticolimbic 
DA pathway undergoes vast developmental changes 
during adolescence both in fiber projections to the 
PFC and in sensitivity to DA within the NAc, 
dorsal striatum, and PFC target areas through altered 
receptor expression. Some of these developmental 
changes seem to occur independently of the gonadal 
hormone surge associated with puberty (Andersen 
et al., 2000; Willing et al., 2017). Although tyrosine 
hydroxylase immunoreactivity in the PFC increases 
across adolescence, this increase does not appear to 
be associated with markers of pubertal status (Willing 
et al., 2017). Preventing the pubertal rise in gonadal 
hormones by gonadectomy on P28 does not alter the 
adolescent (P40) or adult (P80) levels of D1 or D2 
receptor expression in the rat striatum (Andersen 
et al., 2000). Finally, many developmental changes 
occur before puberty (e.g., adult-like morphological 
features of striatal neurons) (Tepper et al., 1998; 
Lee and Sawatari, 2011). For many measures, more 
research is needed to answer this question. The 
influence of gonadal hormones on reward-associated 
behaviors and the mesocorticolimbic pathway 

in adults (Becker et al., 2012) suggests at least a 
modulatory role during adolescence, particularly 
with respect to the emergence of sex differences 
(Kuhn et al., 2010).

Pubertal Influences on mPFC 
Adolescent Development
Recent evidence suggests that, within the adolescent 
period, pubertal onset may be particularly critical 
in specific aspects of mPFC development and 
cognition. Previous work in rats has documented a 
reduction in mPFC volume between the juvenile 
and adult periods (Van Eden and Uylings, 1985), 
and this volumetric reduction may reflect a decrease 
in neuron number. Stereological quantification of 
the total number of neurons in the mPFC across 
adolescence revealed that the majority of neuronal 
losses occur during the period of pubertal onset, 
particularly in female rats (Willing and Juraska, 
2015). Ovariectomy before puberty prevented these 
neuronal losses, further suggesting a role for pubertal 
hormones (Koss et al., 2015). Additionally, there are 
changes in dendritic complexity and synapse number 
in the mPFC during adolescence. Between P35 and 
P90, there is a reduction in dendritic spine density 
in both male and female rats (Koss et al., 2014). In 
a recent study, Drzewiecki et al. (2016) conducted 
an immunohistochemical analysis of synaptophysin 
as a marker for total synapse number in the mPFC 
in P25, P35, P45, P60, and P90 rats of both sexes. 
As expected, there was evidence for significant 
synaptic pruning during adolescence. Interestingly, a 
direct comparison of prepubertal versus postpubertal 
females at P35 and prepubertal versus postpubertal 
males at P45 (corresponding to the average age 
of pubertal onset) revealed that in both sexes, 
postpubertal animals had significantly fewer synapses 
than their prepubertal counterparts.

These structural alterations within the mPFC are 
associated with changes in cognitive performance 
during adolescence, which also seem to depend on 
the timing of puberty. These differences in cognitive 
performance could reflect differences in reward 
processing. Indeed, substance use disorder is often 
described as maladaptive decision-making and reward 
learning. Given the importance of the entire PFC in 
reward learning, it follows that structural changes in 
adolescence result in altered cognitive performance 
and decision-making with regard to reward. Kanit et 
al. (2000) found that pubertal onset alters learning 
strategies in spatial memory tasks. However, there 
is a paucity of research that accounts for a potential 
role for puberty, particularly on mPFC-dependent 
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NOTEStasks. Willing et al. (2016) have recently shown that 
pubertal onset leads to better performance on an 
mPFC-mediated cognitive flexibility component of a 
Morris water maze task in both male and female rats. 
Path length to the novel platform location was shorter 
in postpubertal males and females, and prepubertal 
animals spent a greater amount of time swimming in 
the quadrant where the platform was initially located, 
suggesting a deficit in cognitive flexibility that subsides 
after pubertal onset. In support of these findings, 
recent evidence suggests that pubertal hormones play 
a critical role in the maturation of the PFC in female 
mice. Gonadectomy before puberty blocked the 
adolescent increase in inhibitory neurotransmission, 
and prepubertal estradiol treatment accelerated 
the maturation of inhibitory tone in the PFC and 
advanced the increase in cognitive flexibility in females 
(Piekarski et al., 2017). Future studies are needed 
to determine whether these temporal associations 
with pubertal status reflect pubertal mechanisms or 
coincidental timing.

Development of Social Reward 
During Adolescence
The adolescent transition from childhood to 
adulthood requires a qualitative shift in the perception 
of rewarding social interactions (Spear, 2000). In 
humans, adolescence is characterized by increases in 
time spent with peers and changes in the quality of 
social interactions with family and peers (Larson et 
al., 1996). Adolescents rely on their contemporaries 
for social support and are increasingly reactive to 
treatment by their peers (Ladd et al., 2014). These 
social relationships influence the development and 
maintenance of maladaptive behaviors in adulthood 
(Patterson et al., 1992; Hankin et al., 1998). Indeed, 
peer influence is a strong predictor of adolescent 
depression (Thapar et al., 2012). This reorganization 
of social structure during adolescence is necessary 
for social species to develop appropriate behavioral 
strategies for survival in adulthood (Gopnik et al., 
2017). A close association between adolescent social 
reorganization and puberty is thought to increase 
exposure to genetically distinct individuals when 
sexual behavior emerges, thereby decreasing the 
chance of inbreeding within a social group (Lawson 
Handley and Perrin, 2007).

As in humans, adolescent changes in social 
interactions and social structure are prevalent in 
rodents. Adolescent male rats place a greater value 
on peer-directed activities (Pellis and Pellis, 2017) 
and exhibit a greater preference for social stimuli 
in a conditioned place preference (CPP) test when 

compared with adults (Douglas et al., 2004; Yates et 
al., 2013) and females (Douglas et al., 2004; Weiss et 
al., 2015). However, this effect is most pronounced 
in socially isolated males. Additionally, a peer-paired 
chamber negates CPP induced by cocaine (Zernig et 
al., 2013) and amphetamine (Yates et al., 2013) in 
adolescent males but not in females (amphetamine 
only; Weiss et al., 2015). These data suggest that 
there are striking sex differences in sensitivity to 
social reward in adolescent rodents and that males 
display a greater sensitivity to social reward than 
females. These differences appear to be influenced by 
the pubertal hormonal surge and may result in long-
term alterations in reward valence, as evidenced by 
the influence of prepubertal gonadectomy on reward-
associated behaviors in both male rodents (Schulz et 
al., 2009b; Bell et al., 2013a,b) and female rodents 
(Perry et al., 2013). It is thought that adolescent-
specific social experiences result in permanent 
neural and hormonal changes that coalesce in 
cognitive strategies that lead to effective coping in 
adulthood (Spear, 2000). Therefore, these observed 
sex differences in sensitivity to social reward may 
profoundly influence the neural circuitry involved in 
reward and the sex differences in reward-associated 
behavior seen in adulthood.

The limbic system is a known regulator of social 
interaction and social reward. In particular, the 
amygdala is critically important for the integration 
of emotional stimuli and regulates emotional and 
motivated behaviors (Wassum and Izquierdo, 2015). 
The BLA, in particular, has been studied extensively 
for its role in reward because it is thought to be 
important in assessing/assigning value to stimuli and 
is a key regulator of social interactions. Activation 
of the BLA reduces social interaction (Sanders and 
Shekhar, 1995), whereas inhibition of glutamatergic 
or GABAergic transmission within the BLA increases 
social interactions (Sajdyk and Shekhar, 1997; Paine 
et al., 2017). Recent evidence suggests that these 
behavioral effects are likely projection specific, 
as activating BLA-to-PFC projections decreases 
social behaviors in male mice (Felix-Ortiz et al., 
2016). In addition to its reciprocal glutamatergic 
projections with the PFC, the BLA projects to 
the NAc and receives dopaminergic projections 
from the VTA (Wassum and Izquierdo, 2015). 
Although sex differences in development have yet 
to be studied, it is clear that each of these circuits 
develops at different stages in males (Bouwmeester 
et al., 2002a,b; Cunningham et al., 2002; Caballero 
et al., 2014; Wassum and Izquierdo, 2015; Arruda-
Carvalho et al., 2017). For example, projections from 
the PFC to the BLA are established between P10 and 
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NOTESP15 (Bouwmeester et al., 2002b; Arruda-Carvalho 
et al., 2017), but the reciprocal projections (BLA to 
PFC) are established a few days earlier (Bouwmeester 
et al., 2002b; Cunningham et al., 2002). The 
amygdalar circuit (including NAc, VTA, PFC, and 
vHIP) develops during the juvenile/early adolescent 
period, and synapses are established by the second 
or third postnatal week. Although projections 
within the amygdalar circuitry are established before 
adolescence, recent evidence suggests that the PFC-
to-BLA projections undergo significant synaptic 
strengthening (as measured by the IPSC:EPSC ratio) 
on P30 (Arruda-Carvalho et al., 2017). Also, there 
are more PFC-to-BLA projections on P31 compared 
with P24 and P45 (Pattwell et al., 2016), suggesting 
that this time point in male adolescence may be a 
crucial developmental period for limbic structures. 
The BLA (Trezza et al., 2012; Achterberg et al., 
2015) and extended amygdala (Meaney et al., 1981; 
Meaney and McEwen, 1986; Jessen et al., 2010) are 
both important regulators of social play, a prominent 
juvenile social behavior that may be sexually 
dimorphic (Veenema et al., 2013) and is important 
for social, emotional, and cognitive development 
(Pellegrini, 1988; Vanderschuren et al., 1997; van 
den Berg et al., 1999; Baarendse et al., 2013). Notably, 
the PFC-BLA synaptic development coincides with 
the developmental rise in this behavior (Panksepp, 
1981). Finally, binding at oxytocin and vasopressin 
receptors (two social neuropeptides) peaks in the 
BLA and central amygdala during adolescence (P35) 
in both males and females (Smith et al., 2017). 
Given the known sex differences in social reward 
(Borland et al., 2018), it is imperative that future 
research determine whether there are sex differences 
in the development of BLA connectivity with the 
reward circuitry.

Brain areas outside the canonical reward-associated 
circuitry are also likely to play a role in sex differences 
in reward and motivation, particularly those that are 
hormone sensitive, sexually dimorphic, and send 
projections to brain areas of the mesocorticolimbic 
pathway. The medial amygdala (meAMY) is larger in 
males than in females (Hines et al., 1992; Kerchner 
et al., 1995). However, unlike most sexually 
dimorphic brain regions, sex differences in volume 
of subnuclei within the meAMY do not emerge 
until adolescence, and the pubertal testosterone 
surge in males contributes to the organization of 
this sex difference (De Lorme et al., 2012). This 
change in meAMY structure co-occurs with changes 

in rewarding sociosexual behaviors that are in part 
regulated by it (De Lorme et al., 2012). Additionally, 
the meAMY is sensitive to stress in adolescence in 
a sex-dependent manner. For example, adolescent 
stress demasculinizes the meAMY: meAMY volume 
and cell number are decreased in males stressed 
during adolescence compared with their control 
counterparts, and these stressed males are less 
efficient at mating (Cooke et al., 2000). Collectively, 
this literature suggests that the meAMY contributes 
to the development, initiation, and maintenance 
of sex differences in reward and motivation. 
Additionally, the emergence of many sex differences 
in meAMY during adolescence is affected by social 
cues and could be crucial for the manifestation of sex 
differences in motivation and reward in adulthood.

Conclusions
The factors contributing to adolescent reward are 
many, and we are only beginning to understand 
the complex interactions among neural networks, 
endocrine axes, and environmental cues that direct 
the development of a functioning male- and female-
typical mesocorticolimbic reward circuit. The many 
behavioral changes and neuroendocrine interactions 
may seem chaotic, but it is clear that adolescent 
development is a highly regulated and coordinated 
process. In this review, we have highlighted a few 
overarching themes that are beginning to emerge 
from the chaos: (1) There are notable sex differences 
in adolescent development that might underlie 
sexually dimorphic reward-associated behaviors in 
adulthood. (2) The mesocorticolimbic pathway is 
critical for adolescent changes in social reward and 
reward learning. (3) Reorganization of the reward 
circuitry, particularly the PFC, during adolescence 
relies on social interactions, pubertal hormones, 
as well as nonpubertal processes. (4) Adolescent 
reward circuitry is highly vulnerable to social stress 
and drugs of abuse. Further research is necessary for 
a comprehensive understanding of the factors that 
regulate the development of the mesocorticolimbic 
pathway, those that lead to increased vulnerability to 
disruption, and how this process drives developmental 
changes in motivation and reward. This research 
would benefit from the use of multiple approaches 
and models to disentangle the neural, endocrine, 
and environmental influences on adolescent reward. 
Together, these investigations will provide valuable 
insight into sex-specific psychiatric and behavioral 
disorders that arise during adolescence and could 
lead to novel avenues for treatment and prevention.
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