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Network mechanisms generating abnormal and normal
hippocampal High Frequency Oscillations: A computational
analysis

Abstract

High-frequency oscillations (HFOs) are an intriguing potential biomarker for epilepsy, typically cate-
gorized according to peak frequency as either ripples (100-250 Hz) or fast ripples (> 250 Hz). In the
hippocampus, fast ripples were originally thought to be more specific to epileptic tissue, but it is still very
difficult to distinguish which HFOs are caused by normal versus pathological brain activity. In this study
we use a computational model of hippocampus to investigate possible network mechanisms underpinning
normal ripples, pathological ripples, and fast ripples. Our results unify several prior findings regarding
HFO mechanisms, and also make several new predictions regarding abnormal HFOs. We show that HFOs
are generic, emergent phenomena whose characteristics reflect a wide range of connectivity and network
input. Although produced by different mechanisms, both normal and abnormal HFOs generate similar
ripple frequencies, underscoring that peak frequency is unable to distinguish the two. Abnormal ripples
are generic phenomena that arise when input to pyramidal cells overcomes network inhibition, resulting
in high-frequency, uncoordinated firing. In addition, fast ripples transiently and sporadically arise from
the precise conditions that produce abnormal ripples. Lastly, we show that such abnormal conditions do
not require any specific network structure to produce coherent HFOs, as even completely asynchronous
activity is capable of producing abnormal ripples and fast ripples in this manner. These results provide
a generic, network-based explanation for the link between pathological ripples and fast ripples, and a
unifying description for the entire spectrum from normal ripples to pathological fast ripples.

Significance Statement

Roughly 0.25% of people throughout the world suffer from uncontrolled epilepsy, largely due to our
incomplete understanding of how seizures are generated. This motivates the search for new epilepsy
biomarkers, one of the most promising of which are high-frequency oscillations (HFOs): focal, brief field
potential signals of 80 Hz or more. Not all HFOs are pathological, however, and despite 20 years of
research, it is still unclear how to distinguish normal from pathological HFOs. We use a computational
model to investigate the network properties capable of generating two types of HFOs, ripples and fast
ripples. Our model indicates that a range of physiological conditions are capable of producing the full
spectrum of HFOs, from normal ripples to “epileptic” fast ripples.

Introduction

High frequency oscillations (HFOs) have attracted much attention over the past several years as a potential
biomarker of epileptic tissue. HFOs are brief oscillations (usually <100 ms) over 80 Hz that stand out from
background. They were originally discovered in the CA1 region of normal hippocampus (Buzsáki, 1986;
Buzsaki et al., 1992) and called “ripples” (<250 Hz). Bragin and colleagues subsequently found that
HFOs were increased in epileptic hippocampus in humans (Bragin et al., 1999). They also identified a
new class of faster oscillations (>250 Hz), termed “fast ripples.” Since that time, much effort has focused
on characterizing the role of HFOs in epilepsy (Jacobs et al., 2012).

While these studies suggest the potential of HFOs as a novel epilepsy biomarker, subsequent human
studies have demonstrated the difficulty in determining whether a given HFO stems from normal or
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epileptic processes (Engel et al., 2009; Kerber et al., 2014). Both ripples and fast ripples are increased in
epileptic tissue (Jirsch et al., 2006; Urrestarazu et al., 2007), though the ratio between them is altered
in epilepsy (Staba et al., 2007). Fast ripples are seen in normal neocortex (Coppola et al., 2005; Jones
et al., 2000) and have recently been recorded in hippocampal tissue that does not participate in seizures
(Kucewicz et al., 2014), thus illustrating the need to better understand the mechanisms underpinning
different varieties of HFOs (Jefferys et al., 2012).

Initial studies indicated that normal and epileptic HFOs are produced by different mechanisms. Ripples
are formed in normal tissue by IPSPs when interneurons fire in phase with the oscillation and pyramidal
cells fire very sparsely (Ylinen et al., 1995). Subsequent computational studies have further bolstered
this finding (Taxidis et al., 2012; Brunel and Wang, 2003). In contrast, large numbers of pyramidal cells
become active during pathological HFOs (Bragin et al., 2011). It is currently unclear exactly how networks
produce fast ripples. Proposed mechanisms include networks of axo-axonal gap junctions (Roopun et
al., 2010; Traub et al., 2005), recurrent synapses between pyramidal cells (Dzhala and Staley, 2004),
asynchronous input from CA3 to CA1 (Demont-Guignard et al., 2012), and reduced spike-time precision
resulting in the emergence of two out-of-phase clusters (Foffani et al., 2007; Ibarz et al., 2010). While
each of these hypotheses has merit, they have been difficult to test experimentally due to limitations in
available recording technology. In addition, each of the above theories is subject to important constraints
upon the network—in each case the fast ripples arise only under specific conditions.

In this paper we develop a computational model of hippocampus with the goal of determining which
network phenomena are necessary and/or sufficient to produce normal ripples, pathological ripples, and
fast ripples, as well as to explore mechanistic links between these rhythms. We use a physiologically
realistic model of hippocampus (the “biophysical model”) in which we vary two generic network properties:
the number of inhibitory connections and the strength of excitatory input to all cells. This model allowed
exploration of generic network effects on HFOs. However, given the remarkable capacity for distinct
mechanisms to generate similar HFOs, we also explored how HFOs may arise generally, independent of
any specific network structure. In essence, an HFO is produced by the summation of IPSPs or APs
recorded at the electrode. Therefore, we also develop a constructed local field potential (“constructed
LFP”) model that explicitly controls when IPSP and AP waveforms occur, without any network structure.
This constructed LFP model enables exploration of generic network properties necessary to generate
HFOs, such as synchronous versus asynchronous firing.

We show that HFOs are an emergent phenomenon produced over a broad range of connectivity structures
and levels of synaptic input. While similar results have been demonstrated in models of normal HFOs,
our model produces the full spectrum from gamma frequencies to fast ripples, and uncovers several
novel characteristics of epileptic HFOs. First, the model predicts that HFOs in the ripple range can
be produced by either epileptic (i.e. APs (Bragin et al., 2011)) or normal (i.e. IPSPs (Ylinen et al.,
1995)) mechanisms, and that peak frequency is unable to distinguish between the two. Second, we
show that fast ripples are generic phenomena that are generated by APs and arise when synaptic input
overcomes network inhibition enough to allow out of phase firing. Third, ripples produced by APs are
prone to transient shifts into fast ripples, which may explain why fast ripples are often inconsistent in
experimental recordings. Finally, we show that HFOs are a generic property of active neural populations
and can be generated without any specific network structure, even with completely asynchronous activity.
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Models

Biophysical Model

Our biophysical model of hippocampus was simulated using NEURON 7.3 (Hines and Carnevale, 1997)
and is based upon two previously published models of hippocampal oscillations. The first described
the interplay between gamma and theta oscillations in normal hippocampus due to feedback inhibition
from basket and OLM cells (Tort et al., 2007). The second adapted the same network structure to
demonstrate how ripples (< 250 Hz) arise when epileptic pathologies are present in the network, based
upon the relationship between inhibitory interneurons, network connectivity, and synaptic drive to the
pyramidal cells (Stacey, Lazarewicz, and Litt, 2009). This latter study did not include the OLM cells
since they only affected the much slower theta (< 10 Hz) frequencies in the first model.

Both of those models used blocks of 80 pyramidal cells with 20 basket cells, and the output generated
from the membrane voltages of each cell. In the current model, all cellular and synaptic parameters are
identical to the previous work (Tort et al., 2007; Stacey, Lazarewicz, and Litt, 2009). Each pyramidal cell
has five compartments (basal dendrite, soma, and three-compartment apical dendrite) and the basket cells
have a three-compartment soma. We made two alterations to the model. All cells are given 3-dimensional
coordinates as a two-layer planar disk placed 50 microns from a recording electrode (see below), and the
number of pyramidal cells is increased to 3080.

The pyramidal cells were conceptually divided into 80 “active” cells and 3000 “satellite” cells. As shown
in Fig. 1, each of the active pyramidal cells has efferent AMPAergic synapses with 2 or 3 basket cells,
and receives GABAergic synapses from all 20 basket cells. The satellite pyramidal cells’ only connections
are the GABA synapses from basket cells; they represent the large number of neighboring pyramidal
cells in vivo that receive divergent inhibitory connections from interneurons. Since they receive no input
other than IPSPs, effectively their sole purpose in the simulation is to magnify the IPSP current that is
recorded at the LFP electrode. Basket cells send efferent GABAergic synapses to all 3080 pyramidal cells,
receive AMPAergic synapses from 10 active pyramidal cells, and are coupled to each other with somatic
gap junctions, as seen experimentally wherein they form a synchronous syncytium (Amitai et al., 2002;
Stacey, Lazarewicz, and Litt, 2009). Thus, the basic connectivity of this model consists only of the
inhibitory feedback between pyramidal and basket cells. This reduced structure assures the model is
restricted to phenomena present within this generic connectivity.

The only driving input to the model simulates the primary excitation present in vivo: afferent synaptic
activity. From the point of view of each cell, these inputs arriving from different brain regions can be
modeled as random synaptic events, or “synaptic noise.” Synaptic noise was previously shown to be
capable of producing high frequency oscillations (Stacey, Lazarewicz, and Litt, 2009), and was recently
shown to provoke seizures in vitro (Jirsa et al., 2014). Thus, the afferent activity on both basket and
pyramidal cells was modulated by varying the intensity of AMPA “noise” synapses. Satellite pyramidal
cells did not receive such noise synapses; their only input was IPSPs from basket cells. For each noise
synapse, the time between subsequent synaptic events followed an exponential distribution, so that the
arrival of synaptic noise events was a Poisson process, independent from cell to cell. The mean of this
distribution determined the overall noise intensity, with smaller mean inter-event interval implying greater
intensity. For low intensities it has already been shown that the model generates gamma oscillations (Tort
et al., 2007), typical of the PING phenomenon (Traub, Jefferys, and Whittington, 1997). In this work,
we describe how the peak frequency of the network LFP output increases accordingly as synaptic drive
increases, so that the model produces the full spectrum of fast oscillations: gamma, fast gamma, ripples,
and fast ripples.
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This model enabled the simulation of sharp wave ripples by increasing the intensity of synaptic noise
received by either active pyramidal cells or basket cells, in a manner similar to the mean-field model of
Demont-Guignard et al. (2012). Simulated sharp waves lasted for 35 ms in our model, with onset and
offset following a Gaussian distribution (σ = 7 ms) across the neuronal population (to reproduce the
physiological appearance of sharp waves and avoid nonphysiological, hypersynchronous onset).

The LFP recorded from neural activity was simulated by determining the voltage seen by the electrode
from every compartment of every cell. This was done by recording the transmembrane current in all N
compartments (Malmivuo and Plonsey, 1995) and calculating

V (�re, t) =
ρ

4π

N∑
j=1

Ij(t)

|�re − �rj | , (1)

where V (�re, t) is the net electric potential at the recording electrode at time t, ρ is the extracellular
resistivity, Ij is the transmembrane current in compartment j, and |�re − �rj | is the distance between
compartment j and the recording electrode (these distances ranged from 50 to 215 microns). The quantity
ρ was set to 351 Ω · cm (Latikka, Kuurne, and Eskola, 2001), and all neurons were located in a plane
whose closest point was 50 microns from the simulated recording electrode (see Fig. 1B for a schematic
of the spatial arrangement of the network and recording electrode). NEURON code for the model is
available in ModelDB (Hines et al., 2004).

Constructed LFP Model

One major goal of this work is to determine the generic mechanisms that produce epileptic and normal
HFOs. We sought to answer, independent of any network structure, what type of activity is necessary and
sufficient to produce each type of HFO. As it is impossible to simulate all potential network configurations,
we developed a more basic method of producing neural signals. We explicitly defined the onset times for
a large number of either IPSP or AP waveforms (results shown in Figs. 8, 9, and 10). This model did not
include any neuronal structure; it was simply a mathematical reconstruction of a number of IPSP or AP
waveforms, using the same waveforms generated by the biophysical model. The goal of this model was to
show, under completely controlled conditions, how the LFP would appear if it were generated purely by
either type of waveform. The model allowed an explicit demonstration of the differences between these
two cases, and also enabled exploration of the relationship between variability in cell firing and network
output. To generate this output, we recorded from 200 microns away the LFP voltage produced by an AP
in a single pyramidal cell in our biophysical model, as well as that produced by a basket cell IPSP onto a
pyramidal cell. These two waveforms, which we denote hAP (t) and hPSP (t), were used as templates for
the output of each AP or IPSP. We then simulated a population of cells producing these waveforms at
specific times using the process described below.

Two different statistical procedures (described shortly) were used to generate a sequence of event times
(modeled as Dirac delta functions) for each of N neurons, with each event representing the trigger time
of either an AP or IPSP:

si(t) =

ni∑
j=1

δ(t− tji ), (2)

where si(t) is the event sequence of the ith neuron, ni is the total number of events of the ith neuron,
and tji is the time of the jth event for the ith neuron. The contribution to the net LFP by the ith neuron,
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Vi(t), is then the convolution of si with either an AP or PSP waveform, hAP/PSP (t):

Vi(t) =

∫ ∞

−∞
si(τ)hAP/PSP (t− τ)dτ. (3)

The net recorded LFP, VN (t), is simply the sum of the contributions from all neurons:

VN (t) =

N∑
i=1

Vi(t). (4)

Note that this simple model does not consider the effect of neuron location or complex electrode filtering
on the recorded LFP waveform.

Synchronous Constructed LFP Model

We used the constructed model to determine the output of a network that is driven by a defined periodic
input. This simulates a situation in which there is some physiological process driving all cells nearly
synchronously at a certain frequency. This is similar to the pyramidal-interneuron gamma feedback
loop in our biophysical model and others (Traub, Jefferys, and Whittington, 1997), but there are many
physiological situations similar to this (e.g. theta rhythm, thalamocortical loops, etc). In effect, a large
number of cells receive a similar input that influences their firing, similar to having a“master clock” in
the system with some random variation in each cell’s firing. We use these conditions to compare the
ability of synchronous APs versus synchronous PSPs to generate HFOs. The input was set to a specific
frequency, and each cell responded to that input with some “jitter” to represent intercellular variability.
The jitter was Gaussian distributed for each cell, as defined by the standard deviation σjitter. The time
of the jth event of neuron i was therefore given by

tji = jT +N (0, σ2
jitter), (5)

where T determines the period of network oscillation. Population events remain periodic indefinitely,
and the parameter σjitter determines the degree of event synchrony, with smaller values of σjitter implying
greater synchrony (see Fig. 9A for a depiction of the effect of this parameter).

Asynchronous Constructed LFP Model

However, under physiological conditions there is not always a “master clock” driving the network at a
given frequency. One might expect that, in the absence of any communication between cells, the popula-
tion output would be purely random. However, several results from our biophysical model suggested that
even uncoupled networks sometimes produce coherent oscillations when the pyramidal cells are firing at
similar frequencies. To explore this unexpected result, we created another implementation of this LFP
model to generate asynchronous network events. The goal of this model was to explore the emergence of
HFOs from asynchronously-spiking cells.

The underlying statistical procedure for generating event sequences assumed that a) the entire population
of neurons had a mean event rate, but that there was variability in each cell’s specific rate (as well as in
each cell’s initial phase), and b) each cell also exhibited variability, or “jitter,” from event to event. These
sources of variability, as well as the independence of all event sequences, were important to investigating
the possibility that asynchronous neuronal spiking might generate ripples and fast ripples. Formally,
inter-event jitter was modeled by assuming that given the jth event of neuron i occurs at time tji , the
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next event tj+1
i will occur at some later time Gaussian-distributed about neuron i’s intrinsic inter-event

interval, μi:
p(tj+1

i = t|last event time = tji ) = N (tji + μi, σ
2
jitter). (6)

To account for population heterogeneity in intrinsic frequency, each μi was drawn from N (μpop, σ
2
μ). The

parameter σμ therefore quantifies how similar the intrinsic firing rates are among different cells, whereas
σjitter quantifies how consistent an individual cell’s firing rate is. Note that without the presence of any
form of coupling between the different “neurons” (i.e. event sequences) in the population, all neurons
undergo events independently, resulting in completely asynchronous network dynamics. (Neuronal events
were initialized with uniformly random values, so that the network began in an asynchronous state.) We
studied the generation of ripples and fast ripples in this model while fixing the population mean μpop to
be 5 ms (corresponding to a mean population frequency of 200 Hz). Simulations using AP waveforms
featured 100 different cells, while those using IPSP waveforms featured 1500 different cells (reflecting the
much larger number of synapses—in comparison with spiking compartments—which contribute to the
LFP).

Analytic proof of HFOs from asynchronous firing

In this section we present an analytic solution proving that HFOs can arise from purely asynchronous
firing. Consider a signal g(t) generated by convolving a waveform (such as an AP or IPSP waveform)
with a periodic train of delta functions that occur with frequency f0. The Fourier transform of this
signal, G(f), will feature peaks at f0 and its harmonics and will have an amplitude of zero at all other
frequencies. Then consider the signal generated by summing N randomly-shifted copies of g(t),

gN (t) =

N∑
j=1

g(t− τj), (7)

where τi are independent and identically-distributed random variables, each with probability density func-
tion p(τi) = unif(0, 1

f0
). The function gN (t) crudely represents the LFP generated by a population of in-

dependent neurons all firing at the same frequency but with random phase. Somewhat counterintuitively,
the expected amplitude of this signal does not go to zero as N increases, but rather increases with N . This

can be seen by first considering the Fourier transform of the summed signal, GN (f) =
[∑N

j=1 e
iθj
]
G(f),

where θj = −2πfτj .

The expected squared-amplitude at a given frequency, E
{|GN (f)|2}, can be determined by defining the

random variable A =
∑N

j=1 e
iθj and first computing its expected squared amplitude:

E
{|A(f)|2} =

∫ 1/f0

0

dτ1dτ2 . . . dτN p(τ1) p(τ2) . . . p(τN ) |A(f)|2

= fN
0

∫ 1/f0

0

dτ1dτ2 . . . dτN |A(f)|2

(8)

Making the change of variables dτi = −dθi/2πf gives:
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=

(−f0
2πf

)N ∫ 2πf/f0

0

dθ1dθ2 . . . dθN |A(f)|2

=

(−f0
2πf

)N ∫ 2πf/f0

0

dθ1dθ2 . . . dθN

⎛
⎝ N∑

j=1

eiθj

⎞
⎠( N∑

k=1

e−iθk

)

=

(−f0
2πf

)N N∑
j=1

N∑
k=1

∫ 2πf/f0

0

dθ1dθ2 . . . dθN ei(θj−θk)

=

(
f0
2πf

)2 N∑
j=1

N∑
k=1

∫ 2πf/f0

0

dθjdθk ei(θj−θk)

=

(
f0
2πf

)2
[(

2πf

f0

)2

N + 4 sin2
(
2πf

f0

)
N(N − 1)

]

= N + 4N(N − 1)

(
f0
2πf

)2

sin2
(
2πf

f0

)
(9)

Combining this result with the fact that GN (f) = 0 for all non-harmonic frequencies, we have

E
{|GN (f)|2} =

{
N |G(f)|2, if f = nf0 (n = 1, 2, 3...)

0, otherwise
(10)

Thus, the expected value in the frequency domain is to have a peak at f0 and its harmonics, scaled by N .
In other words, the LFP of a population of N asynchronously spiking (but perfectly frequency-locked)
neurons will feature a coherent oscillation at that same frequency, whose squared-amplitude scales as N .
(A perfectly synchronous and frequency-locked population of neurons, on the other hand, will feature a
coherent LFP oscillation whose squared-amplitude scales as N2.) Note that there is a special case for
the asynchronous population: with a very large number of individual waveforms in which the phases are
perfectly spaced, gN (t) will be flat, but this result is unlikely to occur for any particular realization of the
random variables θj , or realistic distribution of real cells.

This derivation therefore proves that a network of asynchronous cells, if firing at the same rate, is likely
to produce a coherent oscillation. In a more heterogeneous network, this affect would be attenuated when
firing rates were dissimilar and augmented when they were similar. Of note, since the output voltage is
additive, any transient instance in which a subset of cells reached these conditions would likely produce
a brief oscillation of those cells superimposed upon a more random background of uninvolved cells.

Data Processing

All spectrograms were obtained using a sliding Gaussian window with a standard deviation of 10 ms and
a frequency resolution of 4 Hz. Fast ripples were defined to occur when the peak normalized power in
the fast ripple band (> 250 Hz) exceeded the peak normalized power in the ripple band (100–250 Hz).

The normalized power values depicted in Figs. 9 and 10 were computed by first applying Thomson’s
multitaper power spectral density estimate (Thomson, 1982) to a given waveform, then determining the
total power contained within 5 Hz of the nominal frequency f . Each square represents an average over
100 different realizations of the “synchronous constructed LFP model” described above.
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Results

HFOs generated by input to either basket cells or pyramidal cells

We first used the biophysical model to determine the parameters necessary to produce the full range of
HFOs. We found that HFOs were elicited through two distinct mechanisms: coherent firing of the 20
basket cells (which sent GABAergic connections to all 3080 pyramidal cells) or the 80 active pyramidal
cells (see Fig. 1). In both cases, coherent firing arose when the noisy synaptic input reached high enough
levels to cause the majority of each cell type to fire. Fig. 2 shows the results of elevated input to
the basket cell population. Power spectral density (PSD) plots from the LFP were generally unimodal,
and peak network frequency increased monotonically with increasing intensity of noisy synaptic input,
spanning a range from gamma oscillations to fast ripples (Fig. 2A). Peak network frequency (Fig. 2A)
closely matched mean basket cell firing rate (Fig. 2B), indicating that the LFP resulted from IPSPs
induced in pyramidal cells due to basket cell firing. Basket cell action potential waveforms were present
but contributed very little to the LFP, due to basket cells’ small size. Although the peak frequency did
reach the fast ripple range, it is crucial to point out that the amplitude of network oscillations decreased
substantially as peak network frequency increased (Fig. 2C). The total power was much higher in gamma
(< 100 Hz) frequencies, and reached very small levels beyond 200 Hz (Fig. 2C). Such small-amplitude
oscillations would be unlikely to resolve above background noise levels in a live recording.

Network activity was distinctly different when noisy input was delivered to pyramidal cells rather than
basket cells (Fig. 3A). The spectral content was bimodal due to different firing rates of the basket and
the active pyramidal cells. The higher frequency was due to basket cell firing (Fig. 3B), which dominated
the output for most low noise intensities. However, in contrast to the prior case (Fig. 2), at higher
frequencies the lower frequency peak, produced by pyramidal cell action potentials, dominated. This
signal became very prominent, as evidenced by the persistence of high signal power (3C). In other words,
when the pyramidal cells are driven by varying levels of synaptic activity, they produce a range of strong
oscillations from 60-150 Hz which are dominated by IPSPs at low frequency and APs at high frequency.
The synaptic input in the latter case reaches very high levels, producing very fast pyramidal cell firing that
would only be expected in highly active conditions such as epilepsy (see Discussion). Thus, this model
shows the transition from what are likely normal to epileptic HFOs. However, with this configuration (all
connections intact) it was impossible to elicit fast ripples for two reasons: 1) the basket cell inhibition
effectively limited the peak frequency of pyramidal cell firing; and 2) pyramidal cells were synchronized
when inhibitory feedback was intact.

Peak frequency insufficient to disambiguate ripple mechanisms

HFOs have traditionally been categorized based upon peak frequency into fast gamma, ripples, and
fast ripples. However, as shown in Figs. 2 and 3, our biophysical model was capable of generating
ripples through both normal and epileptic conditions, similar to recent experimental work (Aivar et al.,
2014). This leads to the question of whether ripples produced by these disparate mechanisms can be
distinguished. To demonstrate the similarities, we depict example waveforms, spectrograms, and raster
plots for simulated sharp-wave ripples elicited by these two different mechanisms (Fig. 4). In panels (A-
D) we show examples of approximately 200 Hz rhythms elicited by elevated basket cell activation (noise
intensity = 0.25× 10−4 nA2). These LFP rhythms reflect synchronous IPSPs induced in pyramidal cells,
consistent with previous experimental studies (Buzsaki et al., 1992; Ylinen et al., 1995). The sparse firing
of pyramidal cells in these examples contrasts sharply with the alternative scenario (Figs. 4(E-H)) in
which active pyramidal cells, rather than basket cells, were directly activated (noise intensity = 0.77 nA2).
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Figs. 4(E-H) show that the peak frequency was again around 200 Hz, but network activity was dra-
matically different: the elevated activity of pyramidal cells induced increased basket cell firing, so that
pyramidal cell spiking and basket cell-induced IPSPs contributed fairly equally to the LFP oscillations.
More importantly, there was more high frequency activity with AP-generated ripples (see increased 300-
400 Hz power in spectrograms E-H), while the IPSP signals (A-D) were smoother without high frequency
content. These examples illustrate the importance of evaluating more than simply the peak frequency
when attempting to discern the underlying cause or pathogenicity of HFOs.

Effects of compromised inhibition

The model was unable to elicit fast ripples with any level of input when network inhibition was intact
(Fig. 3). We therefore investigated the effects of compromising network inhibition on fast ripple genera-
tion. We randomly disabled a specified percentage of basket-to-pyramidal cell GABAergic connections,
then generated 50 consecutive sharp waves by transiently increasing the random synaptic input to active
pyramidal cells. This allowed determination of the proportion of sharp waves that included fast ripple
events. (The peak frequency in the fast ripple band had to have higher spectral power than the peak
frequency in the ripple band for at least 25% of the duration of the sharp wave in order to count as a
fast ripple event.) From the results shown in Fig. 5, disruption of inhibitory connections had a profound
impact on the emergence of fast ripples: as basket cell connections were lost, the same input that had
previously generated only sharp wave-ripple events began to produce fast ripples as well.

Loss of network inhibition has two important consequences in our model. First, fewer inhibitory connec-
tions imply a relatively greater contribution to the LFP from pyramidal cell APs compared to IPSPs.
Second, loss of feedback inhibition erodes the ability of the network to synchronize, until at extreme levels
the network is completely uncoupled, leading to asynchronous pyramidal cell spiking. Yet, as shown in
Fig. 5B, even asynchronous networks generated coherent ripple and fast ripple rhythms. These observa-
tions raise two questions: 1) how does asynchronous neuronal spiking generate ripples and fast ripples,
and 2) to what degree are AP-dominated versus PSP-dominated LFPs capable of producing fast ripples?

Generation of ripples and fast ripples from asynchronous network activity

To address the first question, we ran simulations in which uncorrelated noisy input was delivered to
the 80 active pyramidal cells, with no other cells in the network and no coupling between pyramidal
cells. Fig. 6A shows that this completely asynchronous network generated coherent network oscillations
characterized by a pronounced fundamental frequency and a lower-power first harmonic. This is somewhat
similar to the bimodal PSDs observed when pyramidal cells received input when feedback inhibition was
intact (Fig. 3A), except that the frequencies are higher and—importantly—there were no individual cells
that fired at the frequency of the second harmonic (Fig. 6B). Note that the second harmonic constitutes
a fast ripple frequency, and that unlike the situation in which basket cells were directly activated (Fig.
2C), in this case the oscillation amplitude does not appreciably diminish with increasing noise intensity.
Instead, total power remained roughly constant as noise intensity increased (Fig. 6C), until all pyramidal
cells went into depolarization block (the raster plot in Fig. 6B shows evidence of several cells already in
depolarization block at the highest noise intensity which still sustained network oscillations).

Fig. 6A shows that the ripple (<250 Hz) frequencies dominated despite the presence of the fast rip-
ple harmonics. However, our observations of the instantaneous signals revealed that there were many
instances in which fast ripples dominated, just as in Fig. 5 B,C. In order to investigate how such fast
ripple activity emerges in this asynchronous network, we ran a long simulation (20,000 ms) (Fig. 7) using
the same uncoupled pyramidal cell network as used in Fig. 6, with the noise intensity set to the highest
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level that still sustained network oscillations (0.77 nA2). At this level of noise intensity, some neurons
went into depolarization block (Fig. 6B), while the remaining firing neurons all had similar firing rates
due to their similar dynamics. As shown in Fig. 7A, we observed that strong ripple oscillations at ∼ 200
Hz (which matched the mean firing rate of neurons not in depolarization block) dominated the LFP
the majority of the time, but that fast ripple episodes emerged spontaneously, typically lasting 20-50
ms. Spike-time histograms relative to ripple phase indicated that the ripple episodes had a single cluster
(Fig. 7B), while fast ripple episodes occurred due to two out-of-phase spiking clusters (Fig. 7C). This
is similar to what has been proposed previously by Menendez de la Prida’s group (Foffani et al., 2007;
Ibarz et al., 2010). Most striking, however, is that in our results there is no organizing mechanism for
such bi-cluster dynamical states–they emerge briefly and spontaneously from asynchronous activity in
a completely uncoupled network. Such fast ripples are therefore not a result of decreased spike timing
reliability, but emerge by chance when the randomly-evolving spike-time structure happens to assume a
bimodal form.

While it may seem counterintuitive that an uncoupled network could produce a coherent oscillation, this
idea has been investigated previously (Ray et al., 2008; Nunez, 1995), and in the Methods section we
provide an analytical derivation proving that coherent LFP oscillations will emerge from a population of
frequency-locked, asynchronously firing neurons (Eqns. 7-10). The results shown in Figs. 6 and 7 extend
the results of that derivation by demonstrating that coherent oscillations will emerge even when there is
some heterogeneity in mean firing rate from cell to cell.

However, given the complexity of the biophysical model, it is possible that the coherence was due to some
artifact of the simulation itself. We therefore developed a more basic method to explore this phenomenon,
devoid of any network structure. We implemented a simplified model stripped of all biophysical details,
in which LFP signals were “constructed” by convolving action potential waveforms with a number of
randomly-generated spike trains, each representing the firing times of a single cell. This model assumed
the existence of a network drive for cells to fire near a given frequency, but with two primary sources of
variability in the spiking of each cell. This model is agnostic to the mechanisms that produced a given
activity, and instead simply shows how the LFP would appear if such activity occurred. From this point
on, all results are from this constructed LFP model, rather than the biophysical model.

The constructed LFP model assumed that there were many cells firing near a given frequency due to
conditions in the network. Although each cell was driven in similar fashion, there are two primary sources
of variability in spike times that must be accounted for. The first was motivated by the fact that in the
brain, each cell generally has different parameters and inputs, and thus each will have slightly different
mean firing rates for a given brain state. We modeled each cell’s mean inter-spike interval (ISI) μi as
being drawn from a normal distribution with standard deviation σμ. The second source of variability
modeled “jitter” in ISI times, since each cells’ ISI typically fluctuates from spike to spike due to noise in
the network, even when the mean firing rate is relatively constant over time. The degree of ISI jitter was
determined by the parameter σjitter. The difference in the effects of these two parameters is depicted in
Fig. 8A. (See “Asynchronous Constructed LFP Model” in Methods for further details.)

Figures 8B-E demonstrate that in a generic model of network activity stripped of all biophysical details,
asynchronous neuronal activity can produce strong LFP oscillations. As in the results of the biophysical
model shown in Fig. 6A, the network displayed a prominent oscillation at the overall mean cellular
firing frequency (200 Hz, corresponding to μ = 5 Hz), intermixed with transient fast ripple episodes. As
heterogeneity in mean ISI or ISI jitter increased, the LFP became noisier, LFP oscillations less coherent,
and fast ripple episodes less frequent. Fig. 8F shows the fast ripple occurrence ratio as a function of
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both sources of dynamical heterogeneity, which had very similar overall effect. In both cases, fast ripple
occurrence decreased as heterogeneity increased, with heterogeneity of ∼10% of mean ISI effectively
eliminating fast ripple episodes.

Generation of fast ripples by APs versus PSPs

We observed two different mechanisms for generating fast ripples in our biophysical model: 1) direct acti-
vation of basket cells by noisy input, which was capable of eliciting coherent fast ripple rhythms, though
the amplitude of such rhythms was dramatically smaller than for lower-frequency rhythms (Fig. 2);
and 2) activation of pyramidal cells in networks with impaired inhibition, which saw fast ripples emerge
sporadically from a baseline ripple rhythm (Fig. 7). In the former mechanism the LFP was completely
dominated by IPSPs, which were powerful enough to completely suppress pyramidal cells. The latter
mechanism was dominated by active currents generated by pyramidal cell action potentials. Exper-
imentally, both IPSPs (Spampanato and Mody, 2007; Ylinen et al., 1995; Klausberger et al., 2003b;
Schevon et al., 2009) and APs (Grenier, Timofeev, and Steriade, 2003; Bragin et al., 2011) have been
shown to contribute to HFOs, though their respective abilities to form fast ripples has not been defini-
tively established. To determine the capacity of each type of waveform to generate fast ripples, we
constructed the LFP with explicit event times as in the previous section, but with coupling between the
cells to provide synchrony. In this case, the model compared the output signals produced by either APs
or IPSPs. The only parameters in this model were the nominal firing frequency and the jitter in interspike
intervals, σjitter (see “Synchronous Constructed LFP Model” in Methods).

As shown in Fig. 9D–O, both AP-dominated and PSP-dominated LFPs exhibited coherent oscillations
whose dominant frequency matched the nominal network burst frequency (though AP-dominated LFPs
grew less “clean” as coherence decreased, as shown in Figs. 9D,G). We explored the ability of both
classes of waveforms to generate fast ripples by observing how LFP oscillation amplitude was affected
by increased frequency of network bursts. The color plots in Figs. 9B,C show that AP-dominated and
PSP-dominated LFPs exhibited very different trends: the amplitude of AP-dominated LFPs remained
constant as frequency increased, whereas the amplitude of PSP-dominated LFPs decreased dramatically
with increasing frequency. These trends are even more starkly depicted in the plots of LFP waveforms
shown in Fig. 9D–O. Furthermore, decoherence of network bursts (resulting from increased σjitter) had
essentially the same impact upon AP-dominated LFP amplitude across all frequencies (Fig. 9B). The
impact of decoherence upon PSP-dominated LFPs, on the other hand, grew more severe as frequency
increased (Fig. 9C).

These results show that, independent of the underlying network structure, the actual waveforms that arise
when a population of cells produces either APs or IPSPs have extremely different capacities to produce
fast ripples. The short duration of APs allows a wide range of frequencies that are resistant to significant
jitter among the cells. In contrast, although PSPs are theoretically able to generate fast ripple signals,
the amplitude is extremely low and even small amounts of jitter abolish the signal. We conclude that,
under physiological conditions, it is likely that all fast ripples are generated purely by APs, regardless of
underlying network structure.

Effect of synaptic parameters on fast ripple generation by PSPs

Previous work has shown that network rhythms are dramatically affected by changes in synaptic param-
eters, with faster time constants (such as synaptic rise time) having a much greater impact than slower
time constants (such as synaptic decay time) (Brunel and Wang, 2003). We investigated the effects of
varying these synaptic parameters in our constructed LFP model, with the results shown in Fig. 10.
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For all modifications (increasing and decreasing τrise and τdecay), the amplitude of PSP-dominated LFPs
decreased with increasing frequency, as with the standard synaptic parameters. Modifying τdecay had
very little effect on network rhythms (compare Figs. 10A,B with Fig. 9C), whereas decreasing τrise did
result in more robust network rhythms at high frequency (Fig. 10C). With supraphysiologically fast rise
time (0.5 ms), the output approached the results of APs (Fig. 9B), but was still less robust at higher fre-
quencies. Both of these results are consistent with the findings of (Brunel and Wang, 2003). It should be
emphasized, however, that in all cases increasing frequency resulted in greater sensitivity to decoherence
(i.e., increased relative jitter), an effect that was not observed in AP-dominated LFPs (Fig. 9B). These
results show that LFPs are unlikely to produce fast ripples even with different synaptic parameters due
to their slower dynamics.

In this simplified model, therefore, PSP-dominated LFPs were in principle capable of producing fast
ripples, but these rhythms were much less robust than the fast ripples generated by APs. They required
extreme network coherence and produced very small amplitude signals, and would therefore be unlikely
to be observed in networks with physiological levels of noise.

Discussion

Choice of models and parameters

This work has utilized two models, a biophysical model to show how network interactions produce different
HFOs, and a constructed LFP model to show the differences between HFOs produced by IPSPs and APs.
The biophysical model contains a simple hippocampal network, which assures that we are simulating
generic, rather than structure-specific, phenomena. Because it was designed to simulate fast oscillations, it
did not include the slower effects of OLM cells that produced theta oscillations in the original presentation
of this model (Tort et al., 2007). Omission of OLM cells, and several other potential interneurons, does
eliminate some effects that might be important in generation of particular HFOs. For instance, recent
work has suggested OLM cells are involved in some HFOs (Pangalos et al., 2013; Varga, Golshani, and
Soltesz, 2012), although other work showed that OLM cells were silent during HFOs (Klausberger et al.,
2003a). More complex HFO models show the effects of several other interneurons in producing “normal
ripples (Schomburg et al., 2012), or complex networks of axoaxonic gap junctions producing fast ripples
(Simon et al., 2014). These models, and the others we have previously discussed, contain some effects not
present in our model, which are likely to produce subtle differences in the HFO characteristics; however,
these are not generic mechanisms of HFO generation and it is difficult to compare the results between
such models. Our goal with the current model was to investigate the unifying mechanisms of HFOs, from
gamma to fast ripples, which might reconcile such different networks.

One critical parameter in our biophysical model is the synaptic noise. The synaptic noise represents the
physiological drive that causes cells to become excitable. The lower levels of noise intensity are easily
justified, but several of the effects in this work arise only when the noise reaches extremely high levels.
Such high afferent drive caused each of the cells to fire at very similar rates, at times high enough that cells
began to go into depolarization block (Fig. 6A,B). While such a high level of noise intensity may seem
extreme, it is actually common during epileptic conditions (Jirsa et al., 2014; Stacey, Lazarewicz, and
Litt, 2009; Grenier, Timofeev, and Steriade, 2003; Dzhala and Staley, 2004; Karlócai et al., 2014) and not
unlike other physiological conditions such as the Up state (Destexhe, Rudolph, and Paré, 2003). Because
neighboring pyramidal cells have similar structural and dynamic parameters, their absolute refractory
period and peak firing rate are also similar. Thus, when there is a strong enough network drive, cells will
have similar firing rates, which we demonstrate can produce coherent oscillations regardless of network
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connectivity. A recent study by Alvarado-Rojas et al. (2014) provides strong experimental support for
this scenario.

We developed the constructed LFP model to answer several questions regarding how HFOs can be formed
by APs versus IPSPs. This model gave us explicit control of when the events occurred, allowing us to
investigate how the LFP would appear under a vast range of different network firing, independent of
the specific mechanism that would produce such firing. However, it is important to point out that each
waveform template (i.e. the signal produced when an AP or IPSP occurred) was actually recorded from
the biophysical model. Thus, although there was no neuronal network in this model, its output is identical
to any implementation of the biophysical network that produced the same firing times.

Mechanisms of normal and pathological HFOs

It is currently thought that normal ripples are produced either nearly exclusively by IPSPs (Ylinen et al.,
1995; Le Van Quyen et al., 2008) or a roughly equal mixture of IPSPs and active currents (Schomburg et
al., 2012), while epileptic HFOs are most likely produced predominantly by the active currents associated
with population spikes (Bragin et al., 2011). Our biophysical model is consistent with this view, since
noisy synaptic bombardment of either pyramidal cells or basket cells tended to produce ripples when
inhibition was intact (Fig. 4). In our model this implied either a completely PSP-dominated LFP (when
basket cells were activated) or an LFP comprised of roughly equal parts PSPs and active currents (when
pyramidal cells were activated). As inhibition was progressively compromised, however, noisy synaptic
activation began to activate pyramidal cells more strongly. This produced not only abnormal ripple
oscillations, but also elicited fast ripples with increasing occurrence rate (Fig. 5).

The mechanisms underlying fast ripple generation have been more challenging to explain. Previous
studies on pathological HFOs (Foffani et al., 2007; Karlócai et al., 2014; Wendling et al., 2012; Demont-
Guignard et al., 2012; Aivar et al., 2014) have shown that fast ripples occur when pyramidal cells become
very excitable and inhibition is compromised. Many specific mechanisms have been investigated with
both computational and experimental work: axo-axonal gap junctions (Traub and Bibbig, 2000; Schmitz
et al., 2001; Simon et al., 2014; Roopun et al., 2010; Traub et al., 2005), recurrent synapses (Dzhala
and Staley, 2004; Ibarz et al., 2010), spike time variability (Foffani et al., 2007), uncorrelated firing
(Demont-Guignard et al., 2012), decreased Ca2+ concentration (Aivar et al., 2014), and disconnected
populations (Ibarz et al., 2010). All have demonstrated some experimental evidence, and each may exist
under different conditions, but reconciling these theories has been controversial.

In this study, we take an alternative approach by focusing on the general dynamical properties of network
activity necessary to generate fast ripples, rather than specific lower-level mechanisms. We provide
a generic framework to identify and unify the mechanisms underpinning normal ripples, pathological
ripples, and fast ripples in the hippocampus. In general, normal gamma and HFOs arise when network
drive induces coherent IPSP firing. As the drive increases, pathological HFOs arise when pyramidal cells
become highly active, under any particular network structure. At ripple frequencies, the output can be
any combination of PSP and AP waveforms. High levels of inhibitory feedback in the network are likely
to limit pathological HFOs to ripple frequencies. However, as the pyramidal cells become very active, it
becomes more and more likely that they will transiently desynchronize if inhibition is insufficient. Fast
ripples will then naturally emerge from pathological ripples provided there are enough spikes to produce
an LFP signal, since fast ripples almost certainly must be comprised of APs (Fig. 9). Fast ripples thus do
not depend upon a specific network structure or connectivity, but are a general, emergent phenomenon,
corroborating that each of the aforementioned mechanisms are capable of producing them. The only
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requirements to produce fast ripples are that a) pyramidal cells are very active, b) the cells can become
desynchronized, and c) the LFP is dominated by APs. We predict that any network conditions that
produce these effects will be capable of generating fast ripples.

Features of normal and pathological HFOs

Even after nearly two decades of research, there is still no clear way to determine whether an HFO is
produced by normal or abnormal mechanisms. What is clear is that peak frequency alone is insufficient
to make the distinction. Below 250 Hz, HFOs can be indicative of either completely normal activity
or epileptic tissue. Fast ripples originally appeared to be more specific to epilepsy in hippocampus,
but recent human data have placed that in doubt as well (Kucewicz et al., 2014). And fast ripples
have been well known in normal somatosensory cortex for many years (Amassian and Stewart, 2002;
Blanco et al., 2011). Thus, additional methods are needed to distinguish normal from abnormal HFOs.

Our data suggest two important aspects of abnormal HFOs that may help in future research. First, the
fact that fast ripples emerge from pathological ripples may explain why they are transient and coexist
with ripples on the same electrode recordings. This suggests an alternative strategy of searching for
similarities between such events such as harmonic frequencies or other features, rather than assuming
they are different. Second, our biophysical simulation (Fig. 4) demonstrates that although peak frequency
may be similar in normal and epileptic HFOs, there are more subtle features of the signal such as high
frequency band power that might distinguish them.

One potential use for these results is to guide future experiments to distinguish normal from abnormal
HFOs (Engel et al., 2009). Our model predicts that epileptic hippocampal tissue will have a mixture of
ripples and fast ripples, both of which may be produced by the same mechanism. The key is to identify
features of those signals, other than peak frequency, that are unique to the epileptic pathology. One
possibility is to compare the high frequency band power (>250 Hz), which is higher in AP-dominated
HFOs in our model. However, the rigorous solution to this question will require large amounts of human
data in which vast numbers of HFOs can be analyzed. Recent work using controlled stimulation has
shown that different HFOs can be distinguished using basic features (Kucewicz et al., 2014); our results
can help guide future analysis of such signals to find more comprehensive differences.

“Pathological” HFOs are generic phenomena of highly activated pyramidal
cells

Our biophysical and constructed LFP models show that ripples produced by APs sporadically and
transiently generate fast ripples (Figs. 5 and 7), thus providing a potential link between patholog-
ical ripples and fast ripples. While several previous studies have assumed that AP-dominated rip-
ples result from highly synchronous pyramidal cell firing (Menendez de la Prida and Trevelyan, 2011;
Bragin, Engel, and Staba, 2010), our results suggest an alternative possibility: that AP-dominated rip-
ples in fact do not require any specific structure at all: they may result from asynchronous firing of a
population of pyramidal cells driven near their maximum firing rate. Figs. 8B-E show how in a generic
model a population of independently- and randomly-firing pyramidal cells may generate a strong ripple
oscillation. This result is consistent with previous theoretical studies showing that asynchronous neuronal
firing can produce coherent LFP rhythms (Ray et al., 2008; Nunez, 1995), and in the Methods section
we provide an analytical derivation which further supports this idea.

We thus have shown, via biophysical modeling, a constructed LFP, and an analytical derivation, that
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ripples and fast ripples emerge from very active networks even without any specific coupling between
cells. As Fig. 7A shows, a heterogeneous population of uncoupled pyramidal cells all firing independently
at ∼ 200 Hz (which several studies have shown to be a realistic rate under epileptic conditions (Grenier,
Timofeev, and Steriade, 2003; Dzhala and Staley, 2004; Karlócai et al., 2014)) will produce a 200 Hz
rhythm which sporadically doubles to 400 Hz. Fig. 7C demonstrates that such frequency doubling may
be explained by a familiar mechanism: the emergence of two out-of-phase clusters (Foffani et al., 2007;
Ibarz et al., 2010). It must be emphasized, however, that in our model the emergence of such a bi-cluster
state is inherently different from previous work: there is no network structure or coupling of any sort in
Fig. 7, and thus the emergence of fast ripples is not due to an organized population losing spike-time
reliability or splitting into two independent clusters, since the ripple rhythm from which fast ripples
emerge is itself generated by uncoupled, asynchronously-spiking cells.

In our model, the emergence is purely from asynchronously-spiking cells, and bi-cluster states emerge
when the spike-timing distribution of the heterogeneous neuronal population happens to transiently
assume a bimodal form. Thus, this mechanism is a more generalized example of that proposed in Foffani
et al. (2007) and Ibarz et al. (2010), which find experimental support in the work of Jiruska et al. (2010).
Our results are also consistent with the findings of Demont-Guignard et al. (2012), who devised a model
showing that fast ripples are elicited in CA1 due to relatively asynchronous CA3 input. It should be
noted, however, that our model additionally proposes that asynchronous pyramidal cell firing provides a
mechanistic link between pathological ripples and fast ripples, thereby helping to explain why fast ripples
are often intermixed with ripples (Bragin et al., 1999; Worrell et al., 2008), as well as why fast ripples
are so ephemeral.

These results also potentially lead to a novel approach to thinking of so-called pathological HFOs. While
it is true that the conditions capable of producing asynchronous HFOs are most likely to be seen during
epileptiform activity, there are normal conditions that might also produce it. AP-dominated HFOs, both
ripples and fast ripples, simply require highly active pyramidal cells that are not fully synchronized. There
are many potential conditions that might produce this activity, especially within the very brief time course
of an HFO. Thus it is not surprising that fast ripples are seen transiently in normal cortex (Amassian
and Stewart, 2002; Kucewicz et al., 2014; Blanco et al., 2011). Therefore, to use HFOs as a biomarker of
epilepsy, further study will have to evaluate not only more sophisticated features of individual HFOs, but
also make use of large datasets to evaluate population features such as temporal variability and network
correlations that will provide more statistical rigor.

Conclusion

Collectively, our results suggest a unifying framework for characterizing the network mechanisms under-
pinning HFOs, from normal ripples to pathological ripples and fast ripples. Our model demonstrates
that different HFOs arise when synaptic input increases, first triggering IPSPs by activating inhibitory
interneurons, then activating pyramidal cells at high gamma and ripple frequencies, then producing fast
ripples if inhibition is insufficient. This transition from normal to epileptic activity as noise increases is
reminiscent of recent work showing how a network moves from the normal to seizure regime (Jirsa et
al., 2014). We also demonstrate that loss of inhibitory interneurons is sufficient for network rhythms to
transition from IPSP-dominated normal ripples to AP-dominated pathological ripples interspersed with
fast ripples. Other mechansims—such as axo-axonal gap junction coupling, recurrent chemical synapses,
or reduced spike-timing reliability—are not mutually exclusive, but instead comprise a multi-dimensional
space of potential mechanisms for producing fast ripples. In particular, we also show that fast ripples
can result from completely asynchronous firing, and thus are an inherent behavior of networks of similar
pyramidal cells. Any situation that permits cells to fire at high frequency and with similar rates will
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produce “pathological” HFOs.

Distinguishing normal from pathological HFOs remains a challenging problem whose solution holds great
promise for people with epilepsy. In this study we have focused on the network mechanisms that differenti-
ate the varieties of HFOs, motivating future experimental studies to obtain a more comprehensive picture
of network activity. This study also provides a foundation for investigating differential LFP signatures
for normal versus pathological HFOs, and guides future experimental and clinical HFO research.
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ing component of oscillatory extracellular potentials in the rat hippocampus. The Journal of Neuro-
science 32(34): 11798–11811.



19

Simon, Anna, Roger D Traub, Nikita Vladimirov, Alistair Jenkins, Claire Nicholson, Roger G Whit-
taker, Ian Schofield, Gavin J Clowry, Mark O Cunningham, and Miles A Whittington (2014). Gap
junction networks can generate both ripple-like and fast ripple-like oscillations. European Journal of
Neuroscience 39(1): 46–60.

Spampanato, Jay and Istvan Mody (2007). Spike timing of lacunosom-moleculare targeting interneurons
and CA3 pyramidal cells during high-frequency network oscillations in vitro. Journal of Neurophysiol-
ogy 98(1): 96–104.

Staba, Richard J, Leonardo Frighetto, Eric J Behnke, Gary W Mathern, Tony Fields, Anatol Bragin,
Jennifer Ogren, Itzhak Fried, Charles L Wilson, and Jerome Engel (2007). Increased fast ripple to ripple
ratios correlate with reduced hippocampal volumes and neuron loss in temporal lobe epilepsy patients.
Epilepsia 48(11): 2130–8.

Stacey, William C, Maciej T Lazarewicz, and Brian Litt (2009). Synaptic noise and physiological
coupling generate high-frequency oscillations in a hippocampal computational model. Journal of Neu-
rophysiology 102(4): 2342–2357.

Taxidis, Jiannis, Stephen Coombes, Robert Mason, and Markus R Owen (2012). Modeling
sharp wave-ripple complexes through a ca3-ca1 network model with chemical synapses. Hippocam-
pus 22(5): 995–1017.

Thomson, David J (1982). Spectrum estimation and harmonic analysis. Proceedings of the
IEEE 70(9): 1055–1096.

Tort, Adriano BL, Horacio G Rotstein, Tamar Dugladze, Tengis Gloveli, and Nancy J Kopell (2007).
On the formation of gamma-coherent cell assemblies by oriens lacunosum-moleculare interneurons in
the hippocampus. Proceedings of the National Academy of Sciences 104(33): 13490–13495.

Traub, Roger D and Andrea Bibbig (2000). A model of high-frequency ripples in the hippocampus
based on synaptic coupling plus axon–axon gap junctions between pyramidal neurons. The Journal of
Neuroscience 20(6): 2086–2093.

Traub, Roger D, Diego Contreras, Mark O Cunningham, Hilary Murray, Fiona EN LeBeau, Anita
Roopun, Andrea Bibbig, W Bryan Wilent, Michael J Higley, and Miles A Whittington (2005). Single-
column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic
bursts. Journal of Neurophysiology 93(4): 2194–2232.

Traub, Roger D, John GR Jefferys, and Miles A Whittington (1997). Simulation of gamma rhythms in
networks of interneurons and pyramidal cells. Journal of computational neuroscience 4(2): 141–150.

Urrestarazu, Elena, Rahul Chander, Francçois Dubeau, and Jean Gotman (2007). Inter-
ictal high-frequency oscillations (100–500 hz) in the intracerebral EEG of epileptic patients.
Brain 130(9): 2354–2366.

Varga, Csaba, Peyman Golshani, and Ivan Soltesz (2012). Frequency-invariant temporal ordering of
interneuronal discharges during hippocampal oscillations in awake mice. Proceedings of the National
Academy of Sciences p. 201210929.

Wendling, Fabrice, Fabrice Bartolomei, Faten Mina, Clémént Huneau, and Pascal Benquet (2012). In-
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Figure 1. Schematic of the computational model of hippocampus. A: The model consisted of 80 active
pyramidal cells, 3000 satellite pyramidal cells, and 20 basket cells. Active and satellite pyramidal cells were exactly the
same except that active cells received noisy synaptic input which elicited firing, while satellite cells cells did not. Each
basket cell was coupled with gap junctions to the nearest neighboring basket cells and sent GABAergic connections to all
pyramidal cells (both active and satellite). Basket cells received feedback AMPAergic connections from active pyramidal
cells, and they also received noisy synaptic input. All noisy input was independent from cell to cell throughout the
network. B: All cells were distributed uniformly along two perpendicular axes in a plane 50 microns from the simulated
recording electrode. The furthest cells were located 215 microns from the recording electrode.
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Figure 2. HFOs resulting from noisy input to the basket cell population. A: Peak network frequency (defined
as peak frequency of the LFP power spectral density) increased as the intensity of noisy synaptic input to basket cells
increased. The insets depict two example PSD functions. Note the difference in scale between the vertical axes of the two
insets, indicating the extreme diminution of oscillation amplitude as frequency increased. Individual PSDs were obtained
from 1000 ms of simulation data. B: Mean basket cell firing frequency very closely tracked peak network frequency for a
given level of synaptic input. C: Total LFP power above 30 Hz decreased dramatically as noisy intensity (and peak
network frequency) increased. Therefore while it was possible for noisy input to basket cells to elicit rhythms with fast
ripple frequencies, such rhythms exhibited very low amplitude.
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Figure 3. HFOs resulting from noisy input to the active pyramidal cell population. A: Increased noise
intensity to pyramidal cells stimulated increases in the two highest-power frequencies observed in the LFP PSDs, which
were generally bimodal (see insets). Note that the network was incapable of generating rhythms faster than 250 Hz, in
contrast to simulations in which basket cells received direct input (Fig. 2A). B: High-frequency and low-frequency spectral
bumps corresponded to the mean firing rates of basket cells and active pyramidal cells, respectively. C: Relative
dominance between the two spectral bumps varied with noise intensity, as shown in this plot of the ratio of the maximum
power of the high-frequency peak to the maximum power of the low-frequency peak. Ratios greater than 1 (demarcated
by the dashed line) imply that the high-frequency peak dominated the low-frequency peak. D: Total LFP power above 30
Hz tended to decrease somewhat with increasing noise intensity, though not nearly as dramatically as when basket cells
received noisy input (Fig. 2D).
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Figure 4. Ripple generation by noisy stimulation of either basket cells or pyramidal cells. A-D: Examples
of sharp-wave ripples induced by activation of the basket cell population (ID numbers 81–100 in the raster plot). Note the
extreme sparsity of spiking of pyramidal cells (ID numbers 1–80 in the raster plot). LFP ripple oscillations were produced
by IPSPs in all 3080 pyramidal cells. (The 3000 satellite cells never fired action potentials and are not included in the
raster plots.) E-H: Examples of sharp-wave ripples induced by activation of the active pyramidal cell population. The
increased pyramidal cell spiking induced increased basket cell activity. Their inhibitory influence restricted the dominant
frequency component to ≈200 Hz.
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Figure 5. Effect of diminished inhibition on fast ripple incidence. Simulations were conducted
in which 50 separate sharp waves were induced by increasing noisy input to active pyramidal cells. The
percentage of intact inhibitory connections from basket cells to both active and satellite pyramidal cells
was modulated. A fast ripple was defined to occur when the peak energy in the fast ripple band (>250
Hz) exceeded the peak energy in the ripple band (100–250 Hz). A: Proportion of sharp waves which
exhibited fast ripples, as a function of intact inhibitory connections. As inhibitory connections
diminished, fast ripple incidence increased dramatically. (Error bars represent s.e.m. over ten
simulations, each with 50 induced sharp waves.) B–D: Example LFP’s and spectrograms for three levels
of intact inhibition, each with three example sharp waves. FR=fast ripple episode, R=ripple episode.
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Figure 6. HFOs resulting from noisy input to 80 uncoupled pyramidal cells. A: Two highest-power frequecy
peaks in the PSD as a function of noise intensity. PSDs were generally bimodal, and grew more coherent as noise intensity
increased. Note how the high-frequency peaks reached fast ripple frequencies and represent a harmonic of the
low-frequency peaks. B: The low-frequency peak in the PSDs from panel A corresponded to the average cellular firing
frequency. Inset shows a raster plot of network activity resulting from the highest noise intensity that still sustained
network oscillations. Noticeable horizontal gaps in the raster plot indicate neurons going into momentary depolarization
block. Higher noise intensity resulted in virtually the entire network going into depolarization block. C: Ratio of peak
power of the high-frequency peak to peak power of the lower-frequency peak. D: Total LFP power above 30 Hz as a
function of noise intensity. As in Fig. 3, there were coherent oscillations even at high noise intensities.
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Figure 7. Emergence of fast ripples in an uncoupled, asynchronously-spiking network. Using the same
parameters as the highest-frequency data in Fig. 6, a 20,000 ms simulation was performed to identify the emergence of
HFOs in a network of 80 uncoupled pyramidal cells driven by high levels of uncorrelated noisy input. A: LFP spectrogram
of a 1000-ms interval demonstrates that both ripple (R) and fast ripple (FR) episodes emerged sporadically. B:
Spike-timing histogram relative to ripple phase, averaged over all 78 observed ripple episodes. C: Spike-timing histogram
relative to ripple phase, averaged over all 26 observed fast ripple episodes. Ripples occurred when the 80 cells achieved
brief unimodal spike time distibution, and fast ripples occurred when the distribution was transiently bimodal.
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Figure 8. Fast ripple occurrence ratio for constructed LFP’s generated from AP waveforms. A:
Constructed LFPs were produced by first generating trains of event times which had two sources of variation: (1) different
trains had different values for their intrinsic firing rates, with greater values of σμ implying greater firing rate
heterogeneity between different cells, and (2) within each train there was “jitter” in the inter-spike interval (ISI). These
spike trains were then convolved with AP waveforms and summed to yield the constructed LFP. Red and blue spike trains
show examples of firing times of two different “cells” with different firing rates (left) or different ISI jitter (right). B–E:
Spectrograms and LFP samples from the constructed LFPs generated using the indicated parameters. Fast ripples
frequently emerged from random network firing. F: Fast ripple proportion as a function of the two sources of
heterogeneity in the model. Fast ripple proportion was simply the proportion of total time that the peak frequency in the
100-700 Hz band was greater than 250 Hz..
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Figure 9. Capability of AP versus PSP events to produce HFOs of varying frequency. A: Constructed
LFPs were produced by generating synchronous network bursts of either AP or PSP events at periodic intervals, with
nominal frequency f and random variation defined by σjitter. B,C: Color encodes the power within the frequency band
f ± 5 Hz, normalized by the maximum power observed across all parameters in each waveform. For both APs and PSPs,
increased jitter caused the LFP output to become less coherent and the normalized power to drop. On the other hand,
increasing frequency of network bursts had little effect on AP-dominated oscillations, but resulted in significant
attenuation of PSP-dominated oscillations. D–I: Representative AP-dominated LFPs associated with the corresponding
combinations of parameters indicated in panel B. Note how amplitude is unchanged as oscillation frequency increases.
J–O: Representative PSP-dominated LFPs associated with the corresponding combinations of parameters indicated in
panel C. Note the difference in scale bars, and how amplitude is dramatically attenuated as oscillation frequency increases.
Thus, APs can robustly produce the full range of HFOs, whereas PSPs are unlikely to produce HFOs over 200 Hz.
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Figure 10. Effects of synaptic parameters on HFOs. LFPs were constructed as in Fig. 9C, except that
GABAergic synaptic rise and decay times were modified from their standard values (τrise = 1.5 ms and τdecay = 8.0 ms).
A-B: Changing τdecay had little effect on the HFO output. C-D: Very fast τrise time (0.5 ms) enabled IPSPs to produce
HFOs more robustly.


