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Introduction: Scientific Opportunities and Challenges in Single-Cell Analysis

Background
Individual cells are the basic units with which 
larger biological systems—circuits, tissues, and 
entire organisms—are built. Cells in the same 
tissue or circuit have various biological missions; a 
cell’s missions are reflected in its size, morphology, 
physiology, and use of its genome. Adjacent cells 
often use the same genome in dramatically different 
ways.

Historically, insights about cell types and their 
specialization were obtained one at a time, as a 
result of varying combinations of serendipity and 
painstaking work. The discovery of a cell population 
with unusual physiological properties might be 
followed later by the identification of a molecular 
marker for those cells, and then eventually by insights 
into these cells’ interactions with and connectivity 
to other cells. Several technological innovations 
promise to transform the pace of discovery about 
cell types and their properties—first, by allowing the 
collection of genome-scale information (e.g., about 
gene expression or DNA sequence) from individual 
cells (Tang et al., 2009), and more recently, by 
allowing genome-scale analyses to be conducted on 
vast numbers of individual cells at once (Klein et 
al., 2015; Macosko et al., 2015). The pace of data 
generation has increased dramatically; the pace of 
biological insights will, one hopes, begin to increase 
as well.

Moving From Proofs of Concept to 
Useful Data Resources to Insights
Emerging fields in genomics often follow a similar 
trajectory. Early “proof of concept” studies serve to 
illustrate that new kinds of analysis can be executed. 
Although the data and analysis methods are often 
quickly replaced by better approaches, such early 
results help many readers to expand their sense of 
the possible.

As experimental approaches begin to stabilize and 
mature (such that the shelf life of a dataset is longer 
and its quality more assured), it becomes possible 
to build data resources that have cumulative value. 
In human genetics, for example, datasets on human 
genome variation (alleles and allele frequencies at 
each site in the genome) are used in thousands of 
genetic inquiries every day, supporting both genome-
scale studies and analyses of individual genes 
(International HapMap Consortium, 2015; Lek 
et al., 2016). For single-cell transcriptomics, such 
resources may increasingly take the form of digital 
atlases in which the expression profiles of individual 

cell types can be looked up (Tasic, et al., 2016). Such 
resources may come to have great value because they 
allow routine lookups of genes’ expression patterns 
across cell types. Their immediate results may be 
more facile, quantitative, and reliable than images 
collected by laborious slogs involving antibodies of 
varying qualities, tissues and fixatives with varying 
properties, and hours of microscopy.

The most rewarding phase can occur as new tools and 
data resources begin to support scientific insights into 
molecular and cellular mechanisms, and as broader 
experimental programs and plans reshape themselves 
to utilize the opportunities inherent in new kinds of 
data and new ways of monitoring biological systems.

Approaching Integrated Analysis
For single-cell analysis, a growing scientific 
opportunity will come from beginning to 
draw connections among the different ways of 
characterizing individual cells—to appreciate how 
morphology, physiology, connectivity, and gene 
expression are codistributed and interconnected 
mechanistically. Ideally, the cell atlases of the 
future will report not only what genes each type 
of cell expresses but also what shape(s) it assumes, 
what neurons it connects with, what transmitters it 
responds to, and what voltage and ionic dynamics 
it has. Armed with this kind of characterization, 
we will be able to begin to understand how gene 
expression, morphology, physiology, and connectivity 
influence and arise from one another. In an early 
step in this direction, a recent study related the 
electrophysiological properties of individual cells to 
their molecular profiles (Cadwell et al., 2016).

A practical challenge of integrated analysis 
involves the fact that many kinds of analyses of 
individual cells (e.g., transcriptomics, fixation for 
immunohistochemistry) destroy these cells’ other 
properties, leaving little room for subsequent analyses 
of the same cells. In this Short Course, we will 
discuss the opportunities that arise from integrating 
multimodal data types at single-cell resolution and 
the practical challenges of accomplishing this.

Developing Clearer, More Useful 
Standards and Metrics
New fields often struggle to clarify their thinking 
about how to quantify and compare findings and 
how to distinguish real signals from artifacts. 
Single-cell analysis of somatic DNA variation, for 
example, now indicates that rates of somatic retro-
transposition are far lower than was reported in 
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nowhere has such confusion been more abundant 
than in single-cell transcriptomics. Today, the 
thoroughness of single-cell experiments is still often 
evaluated in terms of “reads per cell”: the ratio of 
the number of sequencing reads generated to the 
number of cells analyzed. However, this metric may 
offer little information about what was learned, 
because any number of DNA or RNA molecules 
can be amplified into an arbitrarily large number 
of copies and then resequenced using an arbitrarily 
large number of sequencing reads without generating 
any new information. (Put another way, if a tree falls 
in the woods, it matters little whether that event is 
documented by one, 10, or 1000 observers, so long 
as the fall is recorded reliably and distinguished from 
that of other trees.)

A similar confusion involves the use of the metric 
“genes detected per cell.” The number of genes 
expressed in a cell depends strongly on cell type, 
and more important, this number is inflated when 
an analysis is not truly single-cell (e.g., when a cell 
doublet is assumed to be a single cell). This problem 
appears to have inflated estimates in early single-
cell studies. Significant advances, such as the use of 
unique molecular indicators (UMIs) (Kivioja et al., 
2011), which affix a particular molecular barcode 
to each cDNA and allow digital counting with 
correction for amplification effects, are increasingly 
enabling true estimates of transcript ascertainment. 
To return to our “tree falling” analogy, UMIs make 
it possible to recognize when many observers 
reporting a “tree falling” are in fact all talking about 
the same tree. Not surprisingly, the figures yielded 
by UMI-informed analyses—typically quantified as 
transcripts per cell (trees) rather than reads per cell 
(observers)—are also far more modest. Still, UMIs 
have offered a significant step forward in clarity, even 
if the resulting estimates have less “bling.” A goal of 
this Short Course will be try to clarify such terms and 
help scientists to design, evaluate, and think about 
experiments in quantitative ways.

Scaling Up Computational 
Approaches
Most single-cell experimental approaches in use 
today produce novel kinds of datasets for which 
computational methods are still in their infancy. For 
example, methods for collecting gene-expression 
information from tens of thousands of individual 
cells have created a new scientific opportunity to 

infer cell types and cell states (including rare ones) 
in “unsupervised” ways that are not constrained 
by earlier theories, categories, or lists of markers. 
This opportunity needs to be met increasingly by 
new analytical approaches. Many computational 
approaches that were developed for early, small 
single-cell RNA-seq datasets do not scale up 
successfully to, or do not realize the opportunities 
inherent in, the far-larger datasets that are being 
generated. Thus, an important direction will be to 
develop algorithms that can recognize patterns and 
structure in vast multidimensional datasets and then 
present these patterns in ways that lead to biological 
insights. This exciting emerging area will benefit 
from close multidisciplinary collaborations among 
scientists who have expertise in computer science, 
biology, statistics, and mathematics.

Seizing the Opportunity Ahead
The functions of tissues and organs derive from 
interactions and collaborations among specialized 
individual cells. Elucidating how tissue and circuit 
functions encompass the actions of specialized cells 
expressing distinct genes and molecular complexes, 
with varying proximity and connectivity, is one of 
the great scientific challenges of our time. Aspiring 
to such understanding is also increasingly within our 
grasp.
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