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Introduction
More than a century ago, Ramon y Cajal and others 
speculated that even the most complex functions 
of the human brain—perception, memory, and 
decision-making—might eventually be understood at 
the level of neuronal cell types and their connections 
(Cajal et al., 2002). Since that time, it has become 
increasingly clear that different brain regions 
contain distinct molecularly specified neuronal 
cell types with characteristic morphological and 
electrophysiological properties. Furthermore, these 
different kinds of neurons are arranged in stereotypical 
circuits that are essential to the functions that each 
brain area performs. True understanding of the 
workings of the normal and pathological brain will 
require identification of all the constituent cell types, 
mapping their interconnections, and determining 
their function in vivo.

Approaches to Cell-Type 
Classification
For decades, the gold standard for classification 
of neuronal cell types has been their complex and 
diverse morphology (Cajal et al., 2002; Burkhalter, 
2008; Petilla Interneuron Nomenclature Group 

et al., 2008). In particular, axonal geometry and 
projection patterns have been the most informative 
morphological features for predicting how a neuron 
is integrated into the local circuit (Burkhalter, 2008). 
To better understand the extensive diversity of cell 
types in the neocortex and how they are connected 
into functional circuits, we recently performed a 
census of morphologically defined neuronal types 
(primarily GABAergic interneurons) in adult mouse 
visual cortex layers 1, 2/3, and 5 (L1, L2/3, and 
L5) using octuple simultaneous, whole-cell patch-
clamp recordings, and an improved avidin–biotin–
peroxidase staining technique that allowed detailed 
recovery of axonal and dendritic arbor morphology 
(Fig. 1) (Jiang et al., 2015). We identified 15 major 
types of interneurons, each of which has stereotypical 
electrophysiological properties and morphological 
features and can be differentiated from all others 
by cell-type-specific axonal geometry and axonal 
projection patterns. Notably, each type of neuron has 
its own unique input–output connectivity profile, 
connecting with other constituent neuronal types 
with varying degrees of specificity in postsynaptic 
targets, laminar location, and synaptic characteristics. 
Despite specific connection patterns for each cell 
type, we found that a small number of simple 

Figure 1. Connectivity among morphologically defined cell types in adult neocortex. Left panel, simultaneous octuple whole-cell 
recording to study connectivity followed by morphological reconstruction. Scale bar, 0.1 mm. Middle panel, synaptic connectivity 
among morphologically distinct types of neurons, including pyramidal neurons. Right panel, connectivity from NGCs to other cell 
types. This connectivity is believed to be nonsynaptic and mediated by volume transmission. B, basket cell; BP, bipolar cell; BT, 
bitufted cell; Ch, chandelier cell; D, deep projecting cell; DB, double bouquet cell; E, horizontally elongated cell; M, Martinotti cell; 
NG, neurogliaform cell; P, pyramidal neuron; S, shrub cell. Adapted from Jiang X et al., 2015, Principles of connectivity among 
morphologically defined cell types in adult neocortex, Science 350:aac9462, their Figs. 3A, 6A, and 6B, with permission from 
AAAS.
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connectivity motifs are repeated across layers and 
cell types, defining a canonical cortical microcircuit.

Recent advances in molecular biology, particularly 
high-throughput single-cell RNA-sequencing 
(RNA-seq) (Tang et al., 2009; Sandberg, 2014), have 
begun to reveal the rich genetic programs that give 
rise to cellular diversity (Fishell and Heintz, 2013). 
These advances have enabled de novo identification 
of cell types in many tissues, including neuronal 
subtypes in the retina, neocortex, and hippocampus 
(Macosko et al., 2015; Zeisel et al., 2015; Tasic et 
al., 2016). Unfortunately, it has been difficult to 
reconcile these molecular classification schemes 
with the classical morphologically defined cell types 
(Burkhalter, 2008; Petilla Interneuron Nomenclature 
Group et al., 2008; DeFelipe et al., 2013). Currently 
available transgenic lines for targeting molecular 
subclasses of neurons paint a picture of the cortex 
in broad strokes, with insufficient resolution to 
distinguish many of the known morphologically 
defined cell types. For instance, in our study of 
interneuron subtypes, we recorded from three widely 
used transgenic lines (targeting parvalbumin [PV]–
expressing, somatostatin [SST]–expressing, and 
vasoactive intestinal peptide [VIP]–expressing 
interneurons). We found that each molecular 
class included a number of distinct morphological 
subtypes, some of which were identified in more 
than one molecular class, and some of which were 
not represented in any of the lines (Jiang et al., 
2015). Novel molecular markers and techniques to 
correlate gene expression and morphology at the 
level of single cells are therefore needed to arrive 
at a comprehensive cell-type classification scheme 
that incorporates molecular, morphological, and 
physiological criteria.

Development of the  
Patch-seq Protocol
We developed a protocol called Patch-seq that 
combines whole-cell patch-clamp recordings with 
high-quality RNA-seq of single neurons, and used L1 
of the mouse neocortex as a simple proof of principle 
to demonstrate the feasibility of this approach to 
cell-type classification (Cadwell et al., 2016). L1 is 
known to contain only two main morphological 
classes of neurons, both of which are inhibitory 
interneurons, with their own distinct firing patterns 
and connectivity profiles: elongated neurogliaform 
cells (eNGCs) and single bouquet cells (SBCs) 
(Jiang et al., 2013). Using standard electrophysiology 
techniques in cortical slices, we first generated 

a dataset of 72 L1 interneurons, for which we 
recorded their firing pattern in response to sustained 
depolarizing current and also reconstructed their 
detailed morphology using avidin–biotin–peroxidase 
staining (Figs. 2a, b). Using this as training data, 
we built an automatic cell-type classifier based on 
electrophysiological properties that could predict 
morphological cell class with ~98% accuracy  
(Figs. 2d, e). In a separate set of experiments, we 
patched an additional set of 67 L1 interneurons in 
acute cortical slices using the Patch-seq protocol. 
This protocol makes use of an optimized mechanical 
recording approach (tip size, volume inside pipette, 
etc.) as well as a modified intracellular recording 
solution to extract and preserve as much full-length 
mRNA from each cell as possible (see Cadwell et al., 
2016, for a detailed protocol). For downstream RNA-
seq analysis, we recorded their firing patterns (Fig. 2c) 
and extracted their cell contents until the cell had 
visibly shrunken (Fig. 2g). Each neuron from this 
RNA-seq dataset was assigned to a neuronal class of 
either eNGC or SBC by blinded expert examination 
of the firing pattern and using the automated classifier 
just described. Both classifications were performed 
independently and led to very similar cell-type labels 
(r = 0.91) (Fig. 2f). In addition, we recorded from 32 
L1 interneurons in vivo in anesthetized animals and 
extracted their cell contents for RNA-seq. Large 
fluctuations in the resting membrane potential, likely 
resulting from ongoing activity in the local circuit 
and/or fluctuations in cortical state (Reimer et al., 
2014), made it difficult to classify neurons recorded 
in vivo based on their electrophysiological properties. 
Thus, these cells did not receive a cell-type label. 
Although we aimed to target L1 interneurons, we 
occasionally patched an excitatory neuron (n = 1  
ex vivo; n = 7 in vivo) or astrocyte (n = 1 in vivo) near the 
L1/L2 border. Rather than discarding these samples, 
we proceeded with RNA-seq in the same manner as 
for the L1 interneurons and used them as additional 
controls to validate cell-type-specific markers (see 
below). In addition, each experiment included at 
least one negative control, in which a recording 
pipette was inserted into the tissue but no cell was 
patched. The negative controls were processed in the 
same manner as the rest of the samples to assess the 
amount of background contamination during sample 
collection and amplification.

After harvesting the cell contents, single-cell 
mRNA was converted to cDNA and used to 
generate sequencing libraries following a protocol 
similar to Smart-seq2 (Picelli et al., 2013; Cadwell 
et al., 2016). Libraries with low cDNA yield (<200 
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Figure 2. Two morphologically and electrophysiologically distinct neuronal classes in neocortical L1. a, Schematic of experimental 
approach. QC, quality control. b, Representative examples of the morphology (top) and firing pattern (bottom) of the two main 
types of neurons found in L1: eNGCs (orange) and SBCs (cyan). For morphological reconstructions, the darker outline represents 
the somatodendritic region, and the lighter color is the axonal arbor. Scale bar, 100 μm. For firing patterns, gray lines represent 
current steps used to elicit the firing patterns shown above. Scale bars, 300 ms (horizontal bar), 40 mV and 500 pA (vertical 
bar). Arrows denote prominent after-depolarization in SBCs. c, Neurons recorded using Patch-seq protocol display similar firing 
responses as seen using standard electrophysiological techniques, as shown in b. d, Output of automated cell-type classifier ro-
bustly predicts morphological class based on electrophysiological features. e, Weights of features used in the automated cell-type 
classifier. f, Results of the automated classifier highly correlate with an independent, blinded expert classification of the electro-
physiological properties as “eNGC-like” or “SBC-like”; r = 0.91. g, Example cells before and after RNA extraction. Reprinted with 
permission from Cadwell CR et al., 2016, Electrophysiological, transcriptomic and morphologic profiling of single neurons using 
Patch-seq, Nat Biotech 34:199–203, Fig. 1. Copyright 2016, Nature Publishing Group.
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pg/μl) or poor quality suggesting cDNA degradation 
(<1500 bp mean size) were excluded from further 
analysis (50/108 cells and 32/32 negative controls). 
A higher fraction of in vivo samples was excluded 
(31/40) compared with ex vivo samples (19/68), 
likely because of a combination of lower amounts of 
cDNA obtained as well as increased contamination 
during in vivo sample acquisition (i.e., the pipette 
must penetrate the dura and traverse more tissue in 
order to reach the target cell). We sequenced the 58 
single-cell libraries that met our inclusion criteria; 
they corresponded to 48 L1 interneurons patched in 
slices, 5 L1 interneurons patched in vivo, 1 pyramidal 
neuron patched in slices, 3 pyramidal neurons patched 
in vivo, and 1 astrocyte patched in vivo. Analyses of 
the sequenced libraries revealed that, on average, 
65% of reads mapped uniquely to the mouse genome, 
and 60% of those mapped within exons. As expected, 
the pyramidal neuron and astrocyte samples showed 
clear differences in gene expression compared with 
the L1 interneurons (Fig. 3a) (Cadwell et al., 2016), 
consistent with known cell-type-specific markers 
(Bignami et al., 1972; Marshak, 1990; Chan et al., 
2001; Fremeau et al., 2001). We subsequently focused 
our analyses on the L1 interneurons, which expressed 
interneuron markers including Gad1, Reln, and 
Cplx3 (Alcantara et al., 1998; Stuhmer et al., 2002). 
We detected ~7000 genes per interneuron (Fig. 3b), 
with an average Spearman correlation of 0.59 and 
0.56 between ex vivo and in vivo cells, respectively 
(Fig. 3c). This result was on par with those of high-
quality cDNA libraries used for molecular cell-type 
classification in other tissue types (Jaitin et al., 2014; 
Treutlein et al., 2014) and had a higher detection of 
genes per cell than a recent study using dissociated 
neurons (Zeisel et al., 2015).

Correlation of Morphology, 
Physiology, and Gene Expression 
Using Patch-seq
In order to explore the interneuron transcriptomes 
and to resolve the molecular cell classes in an unbiased 
manner, we performed unsupervised clustering and 
dimensionality reduction analysis using the 3000 
most variable genes. Affinity propagation was used 
to cluster cells in this high-dimensional gene space 
(without prespecifying the number of clusters), and 
we reduced the dimensionality of the data to visualize 
the resulting clusters using t-distributed stochastic 
neighbor embedding (t-SNE). We identified two 
molecular interneuron clusters (Fig. 3d) (Cadwell et 
al., 2016) with high correspondence to the eNGC 
and SBC classification (41/47 cells, 87%) (Figs. 3d, e). 
Random subsampling of the data demonstrated that 
the two cell classes could be robustly distinguished 

using as few as 31 samples. In addition, we asked 
whether we could predict cell class based on single-cell 
gene expression using a regularized generalized linear 
model (GLM). The classifier performed at ~86% 
accuracy for predicting cell type (Fig. 3f). Together, 
these results demonstrate a strong agreement between 
cell-type assignments based on morphological, 
electrophysiological, and transcriptional profiles.

Next we asked whether specific physiological 
properties could also be predicted using single-
neuron gene expression data. We trained a sparse, 
regularized GLM for each of seven quantitative 
electrophysiological measurements using the single-
cell transcriptome data (selecting the most variable 
50–250 genes across cells) as input. Three of these 
measurements (after-hyperpolarization amplitude 
[AHP], after-depolarization amplitude [ADP], and 
action potential [AP] amplitude) could be predicted 
based on differential gene expression, as shown by the 
correlation between cross-validated predictions and 
the ground truth for individual neurons (Figs. 3g–i). 
The remaining variables (membrane time constant, 
adaptation index, AP width, and resting membrane 
potential) could not be modeled using gene 
expression data, suggesting either that variability 
along these features may reflect factors other than 
differential gene expression or that a larger dataset is 
needed to infer these properties from single-cell gene 
expression.

Transcriptome analyses of cells collected in vivo 
assigned many of them to a specific cell class  
(Fig. 3e). They also suggested a shift in gene expression 
compared with cells collected ex vivo (Fig. 3e, second 
t-SNE component [tSNE2]) that may reflect an 
increased stress response in the acute slice preparation 
(e.g., increased Fos expression ex vivo compared with 
in vivo). Notably, these results demonstrate that high-
quality, whole-transcriptome data can be obtained 
even from single neurons in intact animals, and that 
the gene expression profile within a cell class is mostly 
preserved across in vivo and ex vivo preparations. 
Extension of cell-type classification to include 
dynamic functional properties, such as receptive fields 
and tuning properties (which can be measured only 
in vivo) may ultimately lead to better understanding 
of cell types in terms of their role in information 
processing in the cortex.

Identification of Novel Cell-Type 
Markers Using Patch-seq
Cell-type-specific transcriptome data can be used to 
generate improved driver lines for cell-type targeting. 
As noted earlier, current genetic cell-type-specific 
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markers often lack sufficient specificity to capture 
the known diversity of morphological cell classes 
(Burkhalter, 2008; Petilla Interneuron Nomenclature 
Group et al., 2008; Jiang et al., 2015). In the case 
of L1 interneurons, previous studies have suggested 
that late-spiking eNGCs express Reelin, whereas 
burst-spiking SBCs express vasoactive intestinal 
peptide (VIP) (Miyoshi et al., 2010). However, other 

studies have shown that Reelin is found in similar 
proportions of both cell types, and only ~20% of 
burst-spiking cells express VIP (Ma et al., 2014). We 
found that neither of these markers was very useful for 
distinguishing eNGCs from SBCs at the mRNA level 
(Fig. 4a). This finding calls into question whether 
single-neuron reverse transcriptase (RT)–PCR and 
protein-level studies are well suited for predicting 

Figure 3. Single-neuron transcriptome profiles predict cell type and electrophysiological properties. a, Clustering analysis sepa-
rates interneurons (blue dendrogram subtree) from other neuronal classes (green dendrogram subtree, includes four pyramidal 
neurons and one astrocyte) based on marker gene expression. Two L1 interneurons clustered with non-interneuron cell types, 
indicating possible contamination of these samples, and so these two cells were excluded from our analysis of interneuron sub-
types. b, Number of genes detected per neuron using two different expression thresholds, shown for both ex vivo and in vivo 
collection methods. c, Pairwise Spearman correlation across all detected genes for ex vivo and in vivo patched interneurons. d, Two- 
dimensional t-SNE representation of gene expression for all L1 interneurons. Cells are colored according to affinity propagation– 
based clustering in gene space spanned by the 3000 most variable genes before dimensionality reduction. e, The same two-
dimensional map as in d, but with cells color-coded according to expert classification of cell type based on electrophysiological 
properties. Performance of GLMs using single-neuron gene expression to predict cell type (f), ADP (g), AHP (h), or AP amplitude (i). 
RPKM, reads per kilobase of transcript per million reads. Reprinted with permission from Cadwell CR et al., 2016, Electrophysiologi-
cal, transcriptomic and morphologic profiling of single neurons using Patch-seq, Nat Biotech 34:199–203, Fig. 2. Copyright 2016, 
Nature Publishing Group.



48

NOTES

© 2016 Tolias

which mRNA transcripts are differentially expressed 
between cell types. Using single-cell differential 
expression (SCDE) analysis (Kharchenko et al., 
2014), we identified several genes that are strongly 
differentially expressed between the two cell types 
(Fig. 4b). These genes have the potential to serve as 
more robust cell-type markers and facilitate future 
studies on the functional roles of these cell types in 
the cortical microcircuit.

Patch-seq Provides Insight 
Into Mechanisms of Synaptic 
Specificity and Disease 
Pathophysiology
In the past several decades, we have witnessed a 
revolution in human genetics that has revealed 
hundreds of gene mutations that correlate with 
neuropsychiatric disorders such as autism spectrum 

Figure 4. Differential gene expression analysis reveals novel markers for L1 interneuron classes. a, Box plots summarize the 
cell-type expression level of previously proposed marker genes (Vip and Reelin). b, Box plots with expression levels across cell 
types for novel differentially expressed genes identified between the two affinity propagation clusters. c, Significant gene ontol-
ogy categories from GSEAs on ranked genes from SCDE analysis of SBCs and eNGCs. The gene matrix illustrates gene overlap 
among categories; the bar plot shows the false discovery rates (FDR), and the numbers indicate normalized enrichment scores per 
category from GSEA. RPKM, reads per kilobase of transcript per million reads. Reprinted with permission from Cadwell CR et al., 
2016, Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq, Nat Biotech 34:199–203, 
Fig. 3. Copyright 2016, Nature Publishing Group.
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disorders, schizophrenia, and depression. Many of 
these disease-related genes have been linked to 
synapse formation and function (Spooren et al., 2012; 
Delorme et al., 2013). However, the expression of 
disease-associated genes has not been systematically 
mapped to specific cell types or circuits. Knowing 
which cell type(s) a disease-associated gene is 
expressed in is crucial to understanding the disease 
mechanism and developing novel therapeutic 
strategies (Siegert et al., 2012). Moreover, having 
reference transcriptomes for different neuronal cell 
types will facilitate cell-type engineering through the 
reprogramming of pluripotent stem cells into specific 
types of neurons and could lead to more principled 
treatments for neurological disorders.

In our study of L1 interneurons, gene set enrichment 
analysis (GSEA) revealed that genes involved in 
cell–cell signaling (transmembrane and extracellular 
proteins, receptors, ion channels, and intracellular 
signaling molecules) were particularly upregulated 
in SBCs, whereas genes involved in RNA processing 
and mitochondrial function were upregulated in 
eNGCs (Fig. 4c). These findings are consistent 
with previous reports that eNGCs communicate 
nonspecifically with all cell types using volume 
transmission, whereas SBCs form highly selective 
synapses onto particular neuronal types (Olah et 
al., 2009; Jiang et al., 2013, 2015). In particular, 
our results predict that increased expression of cell 
adhesion molecules (including CDH18 [cadherin 
18], CDH4, and ALCAM [activated leukocyte cell 
adhesion molecule]) and synaptic regulatory proteins 
(such as SYNDIG1 [synapse differentiation inducing 
1]) may play an important role in shaping the synaptic 
specificity of SBCs (Jiang et al., 2013, 2015). Taken 
together, these results demonstrate that whole-
transcriptome profiling of patched neurons is a useful 
approach to identify novel, unpredicted mechanisms 
of synaptic specificity.

A number of the differentially expressed genes we 
identified are also associated with human disease. 
For example, the genes encoding the transcription 
factors NPAS1 (neuronal PAS domain protein 1) 
and NPAS3 are highly expressed in SBCs but not in 
eNGCs (Fig. 4b). Notably, these proteins have been 
implicated in autism spectrum disorders (ASD) and 
schizophrenia and were previously shown to regulate 
the generation of specific neocortical interneurons 
(Macintyre et al., 2010; Stanco et al., 2014). SBCs 
also preferentially express Dpp6 (dipeptidylpeptidase 
6) and Cplx2 (complexin 2) (Fig. 4b). DPP6 is an 
auxiliary subunit of the Kv4 family of voltage-gated K+ 
channels implicated in ASD that regulates channel 

function and dendrite morphogenesis (Lin et al., 
2013), whereas CPLX2 is a presynaptic protein linked 
to schizophrenia that controls neurotransmitter 
release and presynaptic differentiation (Brose, 2008). 
Our observation that four disease genes implicated in 
neuropsychiatric illness are significantly upregulated 
in SBCs, combined with previous studies suggesting 
that SBCs may play an important role in the detection 
of salient sensory information and the mediation of 
top-down influences (Jiang et al., 2013), raises the 
question of whether SBC dysfunction may contribute 
to the pathophysiology of autism and schizophrenia. 
The ability to map disease-associated genes onto 
specific neuronal cell types will lay the foundation 
for a more principled, circuit-level understanding of 
neuropsychiatric disorders.

Conclusions and Future Directions
Generating a complete census of neocortical 
cell types that integrates morphological, 
electrophysiological, and gene expression data into a 
cohesive classification scheme presents a tremendous 
challenge for the field of neuroscience. We have 
developed a technique to bridge these three distinct 
modalities, bringing them into a common framework 
by combining whole-cell patch-clamp recordings 
and high-quality RNA-sequencing of individual 
neurons. Using Patch-seq, we demonstrated that 
cellular morphology, physiology, and gene expression 
can be integrated at the single-cell level to generate 
a comprehensive profile of neuronal cell types, using 
neocortical L1 interneurons as a proof of principle. 
In addition, we identified several molecular markers 
that can be used to target these cell types for further 
study, generate new hypotheses regarding the 
molecular mechanisms of their synaptic specificity, 
and link specific cell types to neuropsychiatric 
illness. Notably, this approach can be used broadly to 
characterize neuronal cell types in any brain region, 
in different mouse models of disease, and even in 
nongenetically tractable organisms such as primates. 
We hope that the ability to perform unbiased, whole-
genome transcriptome analysis and to physiologically 
characterize individual neurons will help to resolve 
long-standing questions in the field of neuroscience 
and initiate entirely new directions of investigation.
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