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Introduction
Sequencing technology enables the complete 
characterization of human genetic variation. 
Statistical genetics studies identify numerous loci 
linked or associated to phenotypes of direct medical 
interest. The major remaining challenge is to 
characterize functionally significant alleles that are 
causally implicated in the genetic basis of human 
traits. Here, I review three sources of evidence for 
the functional significance of human DNA variants 
in protein-coding genes. These include (1) statistical 
genetics considerations such as cosegregation with 
the phenotype, allele frequency in unaffected controls 
and recurrence; (2) in vitro functional assays and 
model organism experiments; and (3) computational 
methods for predicting the functional effect of amino 
acid substitutions. In spite of many successes of 
recent studies, functional characterization of human 
allelic variants remains problematic.

Large-scale sequencing projects have revealed 
the landscape of human genetic variation (1000 
Genomes Project Consortium, 2010; Tennessen et 
al., 2012). Linkage and association studies identified 
a large number of loci involved in various human 
phenotypes. In spite of this spectacular progress, 
characterization of functionally significant human 
alleles causally involved in phenotypes (i.e., directly 
contributing to the biology of phenotypes) remains 
challenging.

The problem of establishing a causal relationship 
between a phenotype and a specific sequence variant 
arises at multiple levels (Table 1). It spans both 
Mendelian and complex trait genetics, even though 
many aspects of the problem and approaches to 
address them are different.

In the simplest case of a Mendelian monogenic 
trait unequivocally linked to a particular gene, the 
problem is in distinguishing between benign and 
pathogenic alleles in this gene. This creates a major 
bottleneck in clinical genetic diagnostics (Plon et 
al., 2008). Many allelic variants observed in genes of 
diagnostic importance remain classified as variants of 
unknown significance (VUSs).

For Mendelian phenotypes with unknown genetic 
background, sequencing studies now provide a 
powerful way to identify causal genes. Briefly, the 
strategy involves finding a gene where all or most 
patients carry functional variants that are not 
observed in multiple unaffected controls (Ng et al., 
2010). Usually, all coding nonsynonymous variants 

and variants disrupting canonic splice sites are 
considered functional and other variants are ignored. 
Although this strategy generated many successes, 
it lacks power if sample sizes are small (only two or 
three patients available) or in the case of oligogenic 
phenotypes. Knowledge of functional significance of 
allelic variants would greatly empower sequencing 
studies aiming at mapping genes underlying 
Mendelian disorders.

Remarkable progress in sequencing technology now 
allows detecting de novo mutations using parent–
child trio sequencing (Roach et al., 2010). This 
approach has been successfully applied to a number 
of Mendelian traits and to complex psychiatric 
phenotypes such as autism and schizophrenia (Roach 
et al., 2010; Xu et al., 2011; Neale et al., 2012; O’Roak 
et al., 2012; Sanders et al., 2012). Relatively small 
numbers of de novo mutations facilitate the analysis. 
On average, humans carry on the order of 100 de novo 
point mutations with only few (on average 1) of them 
coding (Nachman and Crowell, 2000; Kondrashov, 
2003; Kong et al., 2012; Sun et al., 2012). However, 
these mutations are typically unique to individual 
patients. Therefore, it is impossible to use statistical 
approaches to infer their involvement in phenotypes 
in case of whole-exome or whole-genome sequencing 
experiments.

Naturally, the magnitude of the problem is amplified 
when considering variants involved in complex traits. 
Genome-wide association studies (GWAS) identified 
a multitude of common SNPs (single nucleotide 
polymorphisms) associated with human complex 
traits. However, most of these SNPs are not causal and 
simply tag causal alleles due to linkage disequilibrium 
(LD). LD greatly facilitates mapping but equally 
complicates pinpointing causal variants by statistical 
means because association signals of many variants 
are confounded. In many cases, even the identity 
of a causal gene, rather than a specific allele, is not 
known. The problem is exacerbated because most of 
GWAS peaks are in noncoding regions. Moreover, it 
is possible that multiple causal variants give rise to a 
single GWAS peak. A number of sequencing projects 
aiming at finding causal variants underlying GWAS 
peaks are ongoing. The dominant hypothesis is that 
the variants responsible for the observed associations 
are common. Scenarios where associations of common 
SNPs are caused by low-frequency variants or even 
by multiple rare variants have also been proposed 
(Dickson et al., 2010), although subsequent work 
suggested that such scenarios do not explain many 
GWAS peaks (Wray et al., 2011).
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Examples of the functional characterization of 
variants underlying GWAS signals are still rare. One 
early example includes demonstration that a common 
variant creating a transcription factor binding site 
for the CCAAT/enhancer-binding protein alters 
the hepatic expression of the SORT1 gene. This 
variant explains the corresponding GWAS signal 
for association with LDL-cholesterol (Musunuru et 
al., 2010). Fine-mapping studies have been reported 
recently for strong association signals within the 
human leukocyte antigen region (International 
HIV Controllers Study et al., 2010; Raychaudhuri 
et al., 2012). For common noncoding variants, 
analysis of intermediate molecular phenotypes 
related to transcriptional regulation such as mRNA 
expression (Stranger et al., 2007) and chromatin 
accessibility (McDaniell et al., 2010; Degner et al., 
2012; Maurano et al., 2012) offers a potential way 
forward. These early studies on functional effects of 
common noncoding variants are outside of scope of 
this review.

A number of successful candidate gene-sequencing 
studies discovered associations of multiple rare 
coding variants with complex phenotypes (Cohen et 
al., 2004; Ahituv et al., 2007; Ji et al., 2008; Romeo 
et al., 2009; Johansen et al., 2010; Momozawa 
et al., 2011; Rivas et al., 2011; Bonnefond et al., 
2012; Jordan et al., 2012; Kiezun et al., 2012). 
Ongoing whole-exome sequencing studies attempt 
an unbiased search for genes harboring multiple rare 
variants collectively associated with complex traits 
(Price et al., 2010). In the simplest form, this analysis 

detects an excess of rare coding variants in cases 
versus controls. The association signal is provided 
by functional variants, whereas neutral alleles are a 
source of noise masking the association signal. Again, 
functional significance of individual rare variants 
cannot be inferred by statistical means. In contrast 
to common variants, LD does not confound the 
signal. However, the association test for individual 
rare variants lacks statistical power, given that they 
are observed a handful of times (or even once) in 
the sample. The ability to discriminate between 
functional and neutral alleles would dramatically 
increase the potential of sequencing studies focusing 
on rare variants in complex traits. Several published 
studies demonstrated that highlighting functional 
variants using experimental (Romeo et al., 2009; 
Bonnefond et al., 2012) or computational approaches 
(Ahituv et al., 2007; Ji et al., 2008; MacArthur et al., 
2012) increases the power of these studies.

Understanding the functional significance of human 
alleles is also of great importance for evolutionary 
and population genetics. Accurate inference of 
functional consequences of human DNA variants 
would help characterizing the role of natural selection 
in shaping population genetic variation (Tennessen 
et al., 2012).

Overall, medical genetics is interested in finding 
“pathogenic” mutations that causally influence traits 
of medical interest. Population genetics focuses on 
“deleterious” alleles that evolve under purifying 
selection. In contrast, functional analysis is focused 

Table 1. Importance of the functional analysis in various types of human genetics studies

Analysis of Mendelian traits Analysis of rare variants in complex traits

Interpretation of variants in 
previously mapped genes

Mapping genes by whole-
genome/whole-exome 
sequencing

Analysis of rare variants in 
candidate genes

Mapping genes by whole-
genome/whole-exome 
sequencing

Uncharacter-
ized variants 
not known to 
be de novo 

De novo 
mutations

Segregating 
variants

De novo 
mutations

Rare variants De novo 
mutations

Rare variants De novo 
mutations

Analysis of 
the functional 
effect and 
causality is 
essential 

Usually 
regarded as 
sufficient 
evidence of 
functionality 

Functional 
analysis is not 
essential to 
map genes but 
can potentially 
increase power

Functional 
analysis is 
essential 
for isolated 
mutations; 
recurrence 
may provide 
a statistical 
argument 
in favor of 
functionality

Functional 
analysis was 
shown to 
increase power

Likely a 
sufficient 
evidence of 
functionality

Functional 
analysis was 
hypothesized 
to increase 
power

Functional 
analysis is 
essential 
for isolated 
mutations; 
recurrence 
may provide 
a statistical 
argument 
in favor of 
functionality
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on the “damaging” effect on molecular function. 
The rationale for this approach is that the effects 
on phenotypes and fitness must be mediated by 
the effects on molecular function, even though the 
converse is not necessarily true. The existence of 
many common loss-of-function variants in humans 
(MacArthur et al., 2012) and events of adaptive 
pseudogenization (Wang et al., 2006) clearly show 
that damaging alleles may be neutral or beneficial 
rather than deleterious. It is also feasible that most of 
human alleles that are subject to purifying selection 
have no detectable effects on medically relevant 
phenotypes in the current environment. However, 
most studies implicitly assume the strong relationship 
between the effects on molecular function, fitness, 
and phenotypes. For example, many computational 
methods for predicting the functional effects of 
human alleles are based on the inference of purifying 
selection from comparative genomics data.

Here, I review current strategies to infer causality 
and functional significance of human protein–
coding DNA variants, including variants involved 
in Mendelian human traits and rare coding variants 
involved in complex phenotypes.

Inferring the Functional 
Significance of Missense 
Mutations Involved in Mendelian 
Phenotypes
As noted earlier, the problem of assigning functional 
significance to variants involved in Mendelian 
phenotypes arises both in the context of gene 
discovery and in the context of interpreting VUSs 
in known genes. The overwhelming majority 
of sequence variants causing Mendelian traits 
are coding. Among coding variants, “missense” 
changes are the most difficult to interpret (most 
of synonymous changes are benign, and most of 
nonsense or splice-site changes are damaging). 
Three potential strategies to infer causality and 
functional significance could be employed: (1) the 
strategy based on statistical genetics, (2) in vitro or 
in vivo experimental analysis, and (3) computational 
predictions based on evolutionary and structural 
considerations.

Statistical arguments
In some cases, purely statistical arguments can be 
employed in favor of the causal relationship between 
DNA variants and Mendelian traits. Importantly, the 
arguments discussed below are specific to Mendelian 
genetics and, in the most part, cannot be applied to 
variants underlying complex phenotypes.

Analysis of cosegregation of the DNA variant with 
the phenotype is probably the most accurate method 
for establishing causality by statistical means. 
However, at least five informative meioses are 
needed to support causality (Jordan et al., 2011), and 
sufficiently large pedigrees are usually unavailable. 
In addition, segregation analysis may be misleading 
if more than one rare variant is present in the locus 
and cosegregate with the phenotype.

Another important consideration is the analysis 
of allele frequency in unaffected controls. This 
analysis has been dramatically facilitated by large-
scale sequencing efforts such as the 1000 Genomes 
Project (1000 Genomes Project Consortium, 2010) 
and Exome Sequencing Project (ESP) (Tennessen 
et al., 2012). Presence in healthy controls at 
appreciable frequency may reveal whether the allelic 
variant is a benign polymorphism segregating in the 
population, which will exclude the possibility that 
this variant is involved in the disease phenotype 
with high penetrance (this approach is obviously 
noninformative for variance of incomplete 
penetrance unless larger case–control study is 
pursued). Although it is easy to infer that the variant 
is benign (or, at least, not of high penetrance) if it 
is seen in a number of unaffected individuals, it is 
much less clear if its absence in multiple controls 
may serve as a strong support for the pathogenicity. 
Most importantly, for some genes such as BRCA1 
and BRCA2, the number of sequenced cases vastly 
exceeds the number of sequenced controls, making 
the analysis of allele frequency in unaffected controls 
noninformative. Next, differences in global and even 
local ancestry may complicate conclusions because 
many rare variants are specific to individual human 
populations. Also, ESP contains data on individuals 
with various diseases, so not all sequenced individuals 
should be automatically assumed to be unaffected.

Even in the simplest possible case of a variant 
observed in a single patient with a dominant 
phenotype absent in a panel of ideally ancestry-
matched control subjects, the number of control 
subjects should be very large.

At the first glance, population genetics supports 
the use of moderate numbers of controls. Under the 
standard model of a constant size population with no 
natural selection, the chance that a variant observed 
in a patient will not be seen in n normal controls is 
1/(n + 1) (Mitchell et al., 2005) This suggests that 
if the variant is not found in 100 controls, then the 
chance for the mutation to have no phenotypic effect 
is < 1%. Therefore, absence in a moderate number of 
controls would support pathogenicity. The following 
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factors suggest that this is a stark underestimate for 
human populations: (1) human population growth, 
which has resulted in an excess of rare alleles,  
(2) selection against moderately deleterious alleles, 
and (3) human migrations, which have resulted in 
rare alleles not seen in multiple controls (Sunyaev et 
al., 2000; Marth et al., 2004; Williamson et al., 2005; 
Kryukov et al., 2007, 2009; Boyko et al., 2008; Li et 
al., 2010). As seen from Figure 1, a more complex 
population genetics model incorporating population 
growth and natural selection (Kryukov et al., 2009) 
but not migration predicts that there is > 1% chance 
that a benign variant observed in a single patient 
would not be detected in as many as 10,000 controls. 
Taking into account the effects of migration would 
likely make this number even higher. Therefore, 
the sole observation of the absence in multiple 
unaffected controls is insufficient to convincingly 
imply functional significance of a sequence variant.

In some cases, the evidence for pathogenicity of 
specific mutations can be provided by the observation 
of recurrence. For example, independent occurrence 
of two exactly same mutations has been observed in 
Baraitser–Winter syndrome (Rivière et al., 2012a). 
Three different mutations in the same codon have 
been reported in the analysis of the Myhre syndrome 
(Le Goff et al., 2011), strongly suggesting the 
functional importance of this particular amino acid 
position.

A growing number of publications (Heinzen et al., 
2012; Rivière et al., 2012a, b; Van Houdt et al., 
2012) report de novo mutations as evident from 
parent–child trio sequencing. The observation of de 
novo mutation in a gene known to be involved in 
the phenotype (i.e., a gene under an independently 
reported linkage peak or a gene with multiple de novo 
mutations in other families) is highly informative 

Figure 1. The probability that a nonpathogenic variant observed in a single patient would not be observed in multiple controls. 
Log–log scale plot is shown for theoretical model assuming constant population and no natural selection (Ahituv et al., 2007) 
(green line); a population genetic model assuming recent population growth and no natural selection (Kryukov et al., 2009) (blue 
line); and a population genetic model that incorporates both population growth and natural selection (Kryukov et al., 2009) (red 
line). Results of theoretical models are shown together with estimates based on real data obtained by resampling from three 
available systematic resequencing datasets: the Environmental Genome Project dataset, the Seattle SNP dataset (Livingston et al., 
2004), and the Obesity Sequencing Study dataset (Ahituv et al., 2007).
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about the functional significance of the mutation. 
Indeed, the rate of point mutations in humans is 
on the order of 10–8 per nucleotide per generation 
and approximately 10–5 per protein-coding gene 
per generation (Nachman and Crowell, 2000; 
Kondrashov, 2003; Roach et al., 2010; Kong et al., 
2012; Sun et al., 2012). Therefore, it is unlikely that 
a de novo mutation unrelated to the phenotype is 
observed in a known gene. The situation is different, 
however, in the analysis of whole-exome or whole-
genome sequencing without the knowledge of causal 
genes. Although de novo mutations can be considered 
excellent candidates, especially for dominantly 
inherited traits, independent functional validation is 
usually required.

Experimental evidence
Direct experimental functional analysis is a highly 
laborious but a highly convincing method to study 
the effect of human allelic variants. Experimental 
approaches include the analysis of protein expression 
and localization, in vitro functional assays, and 
genetic manipulation on model organisms. The 
enthusiasm for direct experimental methods should 
be accompanied by a cautionary note that specific 
aspects of molecular function analyzed using in 
vitro assays in some cases may be unrelated to the 
phenotype, and the effects of mutations on model 
organisms sometimes may be uninformative about 
the human condition.

In many cases, missense mutations result in changes 
of protein expression and localization. Some recent 
studies relied on immunostaining to assess effects 
of individual human alleles (Boileau et al., 2012; 
Wortman et al., 2012). Testing other aspects of 
protein function requires development of specific 
functional assays. Phosphorylation assays can be 
applied for proteins involved in signaling. A recent 
study of implicated mutations in tyrosine kinase 
domain of the colony-stimulating factor 1 receptor 
(CSF1R) in hereditary diffuse leukoencephalopathy 
serves as an example (Rademakers et al., 2011). 
Autophosphorylation of CSF1R after stimulation 
with the colony-stimulating factor 1 (CSF1) was 
used to assay the function of human mutations. 
Phosphorylation of downstream targets was also 
examined in the study that identified mutations in 
AKT3, PIK3R2, and PIK3CA, causing a spectrum 
of related megalencephaly syndromes (Rivière et al., 
2012b).

Changes in protein–protein interactions can be used 
to detect the effect of mutations on proteins involved 
in complexes. In vitro protein aggregation assay was 

used to test for the function of the co-chaperone 
DNAJB6 that was shown to cause limb-girdle 
muscular dystrophy (Sarparanta et al., 2012).

Functional assay to test lipid metabolism in incubated 
keranocytes was used in a recent study that linked 
PNPLA1 to congenital ichthyosis (Grall et al., 
2012). The same study used differentiation assay.

In some cases, mapping mutations on protein three-
dimensional structure may provide a key insight into 
the functional mechanisms. For example, structural 
localization of KLHL3 mutations causing familial 
hyperkalemic hypertension shows spatial clustering 
that helped to generate a biological hypothesis 
(Louis-Dit-Picard et al., 2012).

Model organisms amenable to genetic manipulation 
provide a possibility to test the phenotypic rather 
than molecular consequences of human allelic 
variants. The mammalian mouse model has been 
a model of choice for years to test the phenotypic 
effect of human genes. However, testing allelic series 
in the mouse is highly laborious. Therefore, zebrafish 
is being increasingly used to test the effect of human 
mutations because this vertebrate species is a powerful 
genetic model and a convenient system to screen for 
phenotypes. The approach involves knocking down 
the fish ortholog of the human gene and assaying 
the phenotypic effect. Next, if injecting human 
wild-type mRNA results in a phenotypic rescue, 
individual alleles can be tested for the potential to 
rescue the phenotype. Last, coinjection of wild-type 
and mutant mRNAs provides a test for dominant 
negative effects. Recent examples of the successful 
application of this approach include the analysis of 
mutations in co-chaperone DNAJB6 (Sarparanta 
et al., 2012) and mutations in the RNA exosome 
component causing pontocerebellar hypoplasia 
and spinal motor neuron degeneration (Wan et al., 
2012). The zebrafish model was employed with the 
great success in characterizing multiple variants in 
several genes involved in ciliopathies (Zaghloul et 
al., 2011).

In some cases, much more distant model organisms 
appear helpful in interpreting human mutations. 
For example, a yeast system was successfully used to 
functionally characterize 84 human variants observed 
in patients with cystathionine-β-synthase deficiency 
(Mayfield et al., 2012).

Interestingly, dog is another species helping to 
establish the relationship between human mutations 
and phenotypes (Grall et al., 2012).
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Computational predictions
Additional supporting evidence for the functional 
significance of missense mutations can be provided 
by computational prediction algorithms. At this 
time, the accuracy of computational predictions is 
about 75–80% (Hicks et al., 2011), with the accuracy 
estimates dependent on datasets or databases that 
are used to define pathogenic and benign variants. 
Thus, the computational analysis is less informative 
than direct experimental evidence. However, given 
that the computational methods do not involve 
any additional labor and cost and can be applied to 
any gene, many studies rely, at least in part, on the 
application of computational methods. The accuracy 
of the methods can be higher for highly confident 
predictions (Jordan et al., 2010). If accompanied 
with rigorous accuracy estimation on a disease-
specific dataset, bioinformatically derived prediction 
information may assist clinical decision-making. 
Current American College of Medical Genetics 
(ACMG) and International Agency for Research 
on Cancer (IARC) recommendations endorse the 
application of computational methods in genetic 
diagnostics but only in combination with other 
criteria (Plon et al., 2008; Richards et al., 2008). As 
more protein sequences and structures accompanied 
by training data (known disease-causing mutations 
and neutral polymorphisms) are available, the 
classification accuracy will improve. At the same 
time, principle difficulties in improving the accuracy 
of prediction methods remain and are discussed at 
the end of this section.

Despite the variety of approaches that exist (Table 2), 
these methods all rely heavily on two fundamental 
observations. First, the regions of proteins that are 
critical to function evolve under long-term negative 
selection; thus, when the sequence of a human 
protein is aligned for comparison to its homologs 
from other species, these sites will display only 
specific patterns of amino acid residue variation or 
complete conservation. The analysis of phylogenetic 
information in the form of multiple sequence 
alignment is a powerful source of information about 
the spectrum of residues allowed at a particular 
position of the protein of interest (Chasman et al., 
2001; Ng et al., 2001; Sunyaev et al., 2001). Second, 
most pathogenic mutations affect protein stability 
(Yue et al., 2005; Potapov et al., 2009). In general, 
the prediction techniques based on protein spatial 
structure can be applied only if the structure has been 
resolved for the query protein or its close homolog, 
which is true only for a minor fraction of human 
proteins. However, even for the proteins with known 
spatial structure, structure-based methods work best 
only in addition to phylogeny-based approaches and 

provide only a slight increase in the accuracy of the 
methods (Kumar et al., 2009; Adzhubei et al., 2010).

Although existing methods all rely on evolutionary 
pattern and, sometimes, protein structure, they differ 
in algorithmic details. For example, SIFT (Sorting 
Intolerant from Tolerant) (Ng et al., 2001) and 
PolyPhen-2 (Adzhubei et al., 2010) estimate the 
probability that the mutant amino acid would fit the 
amino acid position given the observed substitution 
pattern. MAPP (Multivariate Analysis of Protein 
Polymorphism) (Stone and Sidow, 2005) analyzes 
conservation of physicochemical properties of amino 
acids, and LRT (Chun and Fay, 2009) and GERP 
(Cooper et al., 2010) estimate selective constraint. 
The methods based on multiple features also differ 
in the machine learning algorithms they employ. For 
example, MutationTaster (Schwarz et al., 2010) and 
PolyPhen-2 (Adzhubei et al. 2010) rely on the naive 
Bayes classifier, and SNAP (Bromberg et al., 2008) 
utilizes a neural network. Although different methods 
use essentially the same information, surprisingly, 
the methods are commonly discordant. This can be 
explained only in part by different threshold settings. 
This observation motivated the development of 
“umbrella” methods that combine predictions made 
by different algorithms such as Condel (González-
Pérez and López-Bigas, 2011).

The accuracy of the methods could be potentially 
improved if the scope of the methods were narrower, 
specifically focused on a single phenotype and a 
group of genes involved in this phenotype. Such 
methods employ gene-specific training datasets, gene 
phylogeny, protein features, and classification rules 
optimized for a particular set of genes involved in a 
specific disease. Recently developed methods include 
a method focused on the BRCA1 gene, involved in 
risk of breast and ovarian cancer (Karchin et al., 
2007), and a method focused on genes encoding 
proteins of the heart sarcomere involved in 
hypertrophic cardiomyopathy (Jordan et al., 2011).

Two important basic effects hamper further 
development of new prediction methods of higher 
accuracy. First, the existing approaches may 
have intrinsic difficulties differentiating between 
mutations of large effect, important for genetic 
diagnostics, and slightly deleterious sequence variants 
in phylogenetically conserved positions, whose 
existence in genomes of apparently healthy humans 
is confirmed by numerous resequencing studies. 
Second, it was shown that human disease mutations 
are occasionally observed as wild-type alleles in 
vertebrate orthologs (Kondrashov et al., 2002). 
Most likely, this is the result of epistatic interactions. 
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Compensatory sequence changes enable amino 
acid changes corresponding to disease mutations 
in humans to be benign in a different genetic 
background. Current prediction methods analyze 
substitution patterns at individual positions and do 
not account for epistatic interactions. Compensatory 
changes should be taken into account to substantially 
increase the accuracy of computational approaches.

Functional Analysis of Rare 
Nonsynonymous Variants Involved 
in Complex Phenotypes
The analysis of complex traits presents a different set 
of issues. In this review, I limit the discussion to rare 
nonsynonymous variants in complex traits and leave 
out the discussion of functional effects of common 
variants identified by GWAS.

There is a growing interest in the role of rare variants 
in human complex traits. This interest, combined 
with the availability of next-generation sequencing 
technology, propels ongoing whole-exome 
sequencing studies (Do et al., 2012). For individual 
very rare variants, the phenotypic effect cannot be 
identified by the association test. Cosegregation is 
noninformative about variants involved in complex 
traits. The existing statistical approaches analyze 
rare variants collectively, grouping them by gene or 
pathway (Kiezun et al., 2012). In this approach, the 
statistical signal provided by functionally significant 

variants is frequently masked by noise due to 
benign alleles included in the same statistical test. 
Candidate gene–based studies showed that focusing 
on functionally significant alleles can increase 
statistical signal and, hence, the power to detect an 
association between the presence of rare variants 
and complex traits. The signal of association of rare 
variants in melatonin receptor 1B (MTNR1B) with 
type 2 diabetes increases only if variants that affect 
melatonin binding are considered (Bonnefond et al., 
2012). In vitro experiments also helped to increase 
statistical signal of association in ANGPL genes with 
triglycerides (Romeo et al., 2009).

Statistical power of exome-sequencing studies is 
expected to be relatively low (Kryukov et al., 2009), 
so knowledge of functional variants would potentially 
help identify genes harboring rare variants associated 
with complex traits. Using experimental approaches 
at the whole-exome scale is not feasible. Some studies 
argued that computational methods for predicting the 
functional effect of human nonsynonymous alleles 
might be used to increase the power of sequencing 
studies (Ahituv et al., 2007; Price et al., 2010). 
Some statistical methods allow for weighting alleles 
based on potential functional effects. Likely, most 
sequencing studies would employ both tests weighted 
with predicted functional significance and tests 
grouping all nonsynonymous variants, disregarding 
predicted effect on function.

Table 2. A selection of online tools for predicting the functional effect of protein coding variants 

AlignGVGD Conservation of physicochemical properties agvgd.iarc.fr

Condel Prediction method based on combining other 
methods

bg.upf.edu/condel

MAPP (Multivariate Analysis of Protein 
Polymorphism)

Conservation of physicochemical properties mendel.stanford.edu/sidowlab/downloads/
MAPP

MutationTaster Bayes classifier over multiple sequence 
features and conservation

mutationtaster.org

PMut Evolutionary and structural features 
combined using a machine learning method

mmb2.pcb.ub.es:8080/PMut

PolyPhen-2 Evolutionary and structural features 
combined using naive Bayes classifier

genetics.bwh.harvard.edu/pph2

SIFT (Sorting Intolerant from Tolerant) Evolutionary method based on position-
specific scoring matrix

sift-dna.org

SNAP Several evolutionary and structural features 
combined using a neural network

www.rostlab.org/services/snap

SNPs3D Combination of a phylogenetic and a 
structural method; uses support vector 
machine

www.snps3d.org



72

NOTES

© 2015 Sunyaev

Conclusion
Assigning functional significance to human alleles 
and inferring the causal relationship between DNA 
variants and phenotypes remains the central issue in 
human genetics. The most efficient way forward would 
combine statistical genetics considerations, in vivo 
and in vitro experimental studies, and computational 
approaches. Low throughput of current experimental 
methods and insufficient accuracy of computational 
predictions should be addressed to confidently 
annotate massive data on human genetic variation 
from the functional perspective.

An additional issue raising the problem to even 
a greater level of complexity is that, in many 
cases, the same functional variant can have 
different phenotypic consequences varying in both 
expressivity and penetrance depending on other 
genetic and environmental factors.
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